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Powers of large random unitary matrices and Toeplitz

determinants

Maurice Duits ∗ Kurt Johansson †

Abstract

We study the limiting behavior of TrUk(n), where U is a n × n random unitary
matrix and k(n) is a natural number that may vary with n in an arbitrary way. Our
analysis is based on the connection with Toeplitz determinants. The central observa-
tion of this paper is a strong Szegö limit theorem for Toeplitz determinants associated
to symbols depending on n in a particular way. As a consequence to this result, we
find that for each fixed m ∈ N, the random variables TrUkj(n)/

√
min(kj(n), n),

j = 1, . . . ,m, converge to independent standard complex normals.

1 Introduction and statement of results

Random matrix theory

Let U be a random unitary matrix with respect to the Haar measure on U(n), where
U(n) is the group of unitary matrices of size n× n. Denote the eigenvalues of U by
eiθµ , for µ = 1, . . . , n with θµ ∈ [−π, π). Throughout this paper we will consider the
random variable Xn defined by

Xn(U) =

n∑

µ=1

fn(e
iθµ), (1.1)

where fn is a square integrable function on T = {z ∈ C : |z| = 1} with Fourier-series

fn(z) =
∑

|j|>0

αjz
kj(n)

√
min(|kj(n)|, n)

. (1.2)

Here we assume that {αj}j∈Z is a square summable sequence satisfying α−j = αj ,
for each n ∈ N the sequence {kj(n)}j∈N consists of mutually distinct positive integers
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and k−j(n) = −kj(n). Under these conditions fn is real-valued. Alternatively, we
may write Xn as

Xn(U) =
∑

|j|>0

αj√
min(|kj(n)|, n)

TrUkj(n). (1.3)

The main result we obtain is the following theorem.

Theorem 1.1. We have that

lim
n→∞

E[eiXn ] = e−
P

∞

j=1 |αj |2. (1.4)

Hence, for each fixed m ∈ N, the random variables 1√
min(kj(n),n)

TrUkj(n), for j =

1, . . . ,m, converge to independent standard complex normals.

The latter result was obtained before in several special cases. When kj(n), 1 ≤
j ≤ m, do not depend on n, this result is proved by Diaconis and Shahshahani [7]
using moment identities. In this case it is in fact a direct consequence of the strong
Szegö limit theorem for Toeplitz determinants and the Weyl integration formula. If
we consider a single kj(n) ≥ n this result is due to Rains, see [11]. More details and
an extensive list of references can be found in the survey article by Diaconis [5]. See
also Diaconis and Evans [6].

There is a remarkable difference in normalization between the two cases kj(n) ≤ n
and kj(n) > n. For the single case kj(n) > n, Rains proved that the eigenvalues of
Ukj(n) behave like n independently and uniformly distributed points on the unit
circle. Therefore (1.1) follows from the classical central limit theorem. In particular,
the sum of the eigenvalues is of order

√
n.

For kj(n) ≤ n, the term TrUkj(n) is normalized by
√
kj(n). This normalization

follows from the correlation between the eigenvalues of Ukj(n). Due to repulsion,
the typical picture one finds for the eigenvalues is that of a small perturbation of n
equidistant points on the unit circle and we have a very effective cancellation. Note
that the sum of n equidistant points on the unit circle is zero.

Our result generalizes previous results by allowing arbitrary powers depending on
n and thus combines the result from Szegö’s theorem with that of Rains.

An interesting generalization of the problem we consider would be to allow the
coefficients αj to depend on n. In this case it seems difficult to formulate a general
theorem. See section 5 for a remark.

Strong Szegö limit for n-dependent symbols

The starting point of our analysis is the connection with Toeplitz determinants. If
a ∈ L1(T), let Tn(a) be the n × n matrix given by

(
Tn(a)

)
jk

= aj−k, where the ak
are the Fourier-coefficients of a. The Heine-Szegö identity states that

E[eiXn ] = detTn(e
ifn), (1.5)

see [5]. Using this identity we see that in case kj(n), 1 ≤ j ≤ m, do not depend on
n, Theorem 1.1 is nothing else then the strong Szegö limit for Toeplitz determinants.
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In order to prove Theorem 1.1 in the general case, we will prove a strong Szegö limit
for n-dependent symbols of the type (1.2).

Note that fn as defined in (1.2) is a real-valued function. The strong Szegö
limit that we prove holds for complex-valued functions as well, but with a stronger
condition on the coefficients αj. For the sake of completeness we will prove the
general complex-valued case.

Let {αj}j∈Z be any sequence of complex numbers satisfying
∑

j |αj | < ∞. For
each n ∈ N let {kj(n)}j∈N again be a sequence of mutually distinct positive integers
and set k−j(n) = −kj(n). Define gn : T → C by

gn(z) =
∑

|j|>0

αjz
kj(n)

√
min(|kj(n)|, n)

, (1.6)

for all z ∈ T and n ∈ N. Our main result is the following

Theorem 1.2. If
∑

j |αj | <∞, then

lim
n→∞

detTn(e
gn) = exp

∞∑

j=1

αjα−j. (1.7)

This is the analogue of the strong Szegö theorem for Toeplitz determinants, but
now for symbols that vary with n in a particular way.

Now Theorem 1.1 follows from (1.5) and Theorem 1.2 with gn = ifn, but under
the extra condition

∑
j |αj | < ∞. This condition can however be eliminated by a

standard approximation argument which is described in Section 4. However, we want
to emphasize that this argument depends on the fact that fn is real-valued.

Overview of the proof

We will omit the dependence on n in the notation and simply write g and kj. Split
g in

g(z) = g(1)(z) + g(2)(z) =
∑

0<|kj |≤n

αjz
kj

√
|kj |

+
∑

|kj |>n

αjz
kj

√
n

(1.8)

Let a and b be defined by

a = eg
(1)

and b = eg
(2)
. (1.9)

Define

C(1) =
∑

0<kj≤n
αjα−j , C(2) =

∑

kj>n

αjα−j, C =
∞∑

j=1

αjα−j, (1.10)

Note that C(1) and C(2) depend on n, whereas C does not.
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The terms a and b are very different in behavior. As a consequence, we analyze
them separately. We therefore divide the proof of Theorem 1.2 into two parts. The
first part consists of proving that

lim
n→∞

e−C
(1)

detTn(a) = 1. (1.11)

To this end we need the Fredholm determinant identity for Toeplitz determinants,
which was found by Case and Geronimo [8] and independently by Borodin and Ok-
ounkov [3].

The second part consists of proving that

lim
n→∞

e−C
(2)

detTn(ab)

detTn(a)
= 1. (1.12)

Indeed if we can prove that (1.11) and (1.12) hold, then a simple multiplication of
the two gives

lim
n→∞

e−C
(1)−C(2)

detTn(ab) = lim
n→∞

e−C detTn(ab) = 1. (1.13)

Now, since C does not depend on n we can multiply both sides with eC which proves
Theorem 1.2.

For reasons of clarity we will prepare the proof of (1.12) and first prove

lim
n→∞

e−C
(2)

detTn(b) = 1. (1.14)

The proof of this result follows by a fairly direct computation. The results of this
computation can be used for proving (1.12). Hence, in the remaining proof of (1.12)
we can restrict ourselves to only those parts that come in by interaction of g(1) and
g(2). In our opinion, it helps to get a better understanding of the problem. Moreover,
combining (1.11), (1.12) and (1.14) we immediately find the following result.

Proposition 1.3. We have that

lim
n→∞

detTn(ab)

detTn(a) detTn(b)
= 1. (1.15)

This is a so-called separation theorem. Such results have been often investigated
before, see for example [2, 14]. However, all the results known thus far use the fact
that H(a)H(b̃) is of trace class. This is not necessarily true in our case, which makes
Theorem 1.3 an interesting result in its own right.

2 Preliminaries

To fix notation, we recall some definitions of certain operators and Banach algebras
we need later. For a more detailed discussion we refer to [4].

For c ∈ L∞(T), define infinite matrices T (c) and H(c) by

T (c) = (cj−l)
∞
j,l=1 and H(c) = (cj+l−1)

∞
j,l=1 , (2.1)
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where ck are the Fourier coefficients of c. These matrices induce bounded operators
on ℓ2(N). Moreover, ‖T (c)‖∞ = ‖c‖L∞

and ‖H(c)‖∞ ≤ ‖c‖∞.
Denote with Pn the projection operator on ℓ2 that projects on the subspace of all

x ∈ ℓ2(N) for which xk = 0 for all k > n. DefineQn = I−Pn. Let Wn : ℓ2(N) → ℓ2(N)
be the operator defined by

(Wnx)k =

{
xn−k+1, 1 ≤ k ≤ n,

0, k > n
, (2.2)

for all x ∈ ℓ2(N). If c ∈ L∞, then

WnTn(c)Wn = Tn(c̃), (2.3)

where c̃(z) = c(1/z).

Next we recall the definition of certain Banach algebras which will appear fre-
quently in the sequel.

The space B
1/2
2 consists of all f ∈ L2(T) for which

∑
k |k||fk|2 < ∞, equipped

with norm defined by

‖f‖2

B
1/2
2

=
∑

k

(1 + |k|)|fk|2. (2.4)

Again, the fk denote the Fourier coefficients of f . The space B
1/2
2 is a Sobolev space

and a Banach algebra.

The Krein algebra K
1/2
2 is defined as B

1/2
2 ∩ L∞(T). This is a (non-closed) sub-

algebra of L∞(T). However, the norm defined by

‖f‖
K

1/2
2

= ‖f‖L∞
+ ‖f‖

B
1/2
2

, (2.5)

for all f ∈ K
1/2
2 , turns K

1/2
2 into a Banach algebra.

The Wiener algebra consists of all f ∈ L∞, for which
∑

k |fk| <∞ and has norm

‖f‖W =
∑

k

|fk|, (2.6)

for all f ∈W . It is well-known that this is again a Banach algebra.

Note that due to the assumption
∑ |αj | < ∞ we have that g(1) ∈ K

1/2
2 and

g(2) ∈ W . In particular this shows that a and b in (1.9) are well-defined. Moreover,

a ∈ K
1/2
2 , b ∈W and we have the following inequalities

‖a‖
B

1/2
2

≤ e
‖g(1)‖

B
1/2
2 < e(2

P

|αj |2)
1/2

, (2.7)

‖b‖W ≤ e‖g
(2)‖W ≤ e

P |αj |/
√
n. (2.8)

Hence, ‖a‖
B

1/2
2

and ‖b‖W are uniformly bounded in n. For convenience we define

A1 =
∑

|αj | and A2 =
(∑

|αj |2
)1/2

. (2.9)
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These constants will appear frequently in upcoming inequalities.

Besides the operator norm ‖ · ‖∞ we will also use the trace norm, denoted by

‖ · ‖1, and the Hilbert-Schmidt norm, denoted by ‖ · ‖2. Note that if c ∈ K
1/2
2 , then

H(c) is a Hilbert-Schmidt operator and

‖H(c)‖2
2 =

∞∑

j,l=1

|cj+l−1|2 =

∞∑

j=1

j|cj |2 ≤ ‖c‖2

B
1/2
2

. (2.10)

This will be used frequently in the sequel.

3 Proof of Theorem 1.2

3.1 Proof of (1.11)

First, we will prove (1.11). To this end we will use a celebrated Fredholm identity

for Toeplitz determinants. Let g
(1)
+ be the projection of g(1) onto the subspace of all

f ∈ K
1/2
2 for which fk = 0 for all k < 0. Moreover, define g

(1)
− = g(1)−g(1)

+ , a+ = eg
(1)
+

and a− = eg
(1)
− . Finally, define φ = a−1

+ a− and ψ = ã+ã
−1
− .

The Borodin-Okounkov-Geronimo-Case identity now states that

detTn(a) = eC
(1)

det(I −QnH(φ)H(ψ)Qn), (3.1)

for all n ∈ N. Note that since K
1/2
2 is a Banach algebra, we find that φ,ψ ∈ K

1/2
2 and

hence QnH(φ)H(ψ)Qn is a trace class operator. The determinant on the right-hand
side is a Fredholm-determinant. Note that we use the formulation by Basor and
Widom, see [1], which is slightly different from the one by Borodin and Okounkov in
[3].

So we need to prove that the Fredholm-determinant converges to 1 to obtain
(1.11).

Lemma 3.1. We have that

|det(I −QnH(φ)H(ψ)Qn)− 1| ≤ exp



( ∞∑

k=1

k|φk+n|2
)1/2( ∞∑

k=1

k|ψk+n|2
)1/2


− 1,

(3.2)
for all n ∈ N.

Proof. A standard inequality for Fredholm-determinants gives

|det(I −QnH(φ)H(ψ)Qn) − 1| ≤ e‖QnH(φ)H(ψ)Qn‖1 − 1.

The trace norm can be estimated by

‖QnH(φ)H(ψ)Qn‖1 ≤ ‖QnH(φ)‖2‖H(ψ)Qn‖2.
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A straightforward calculation shows that

‖QnH(φ)‖2
2 =

∞∑

k=1

k|φk+n|2, and ‖H(ψ)Qn‖2
2 =

∞∑

k=1

k|ψk+n|2,

which proves the statement.

Hence we need to show that

lim
n→∞

∞∑

k=1

k|φk+n|2 = 0 and lim
n→∞

∞∑

k=1

k|ψk+n|2 = 0. (3.3)

Note that if φ and ψ did not depend on n (as in the classical case), then this trivially
holds. But since they depend on n there is still some work to be done.

Lemma 3.2. Let N ∈ N and t be defined by the Fourier series t(z) =
∑

0<j≤N
tjz

j√
|j|

.

Define Ft associated to t by Ft(z) =
∑

0<j≤N |tj|zj . Then

|(et)k+N | <
1√

k(N + k)

(
Ft(e

Ft − 1)
)
N+k

(3.4)

for all k ∈ N.

Proof. First consider powers tl for l ≥ 2. Then

(
tl
)
k+N

=
∑

j1+j2+···+jl=k+N

tj1 · · · tjl√
|j1 · · · jl|

Since j1 + j2 + · · ·+ jl = k+N , there should be at least one js, with js ≥ (N + k)/l.
But js ≤ N and hence j1 + j2 + · · · + jl − js ≥ k. Hence there exists a jr 6= js such
that jr ≥ k/(l − 1) > k/l.

Therefore
∣∣∣
(
tl
)
k+N

∣∣∣ < l√
k(k +N)

∑

j1+j2+···+jl=k+N
|tj1 · · · tjl | =

l√
k(k +N)

(
F lt
)
k+N

.

Hence,

∣∣∣
(
et
)
k+N

∣∣∣ ≤
∞∑

l=2

∣∣∣
(
tl
)
k+N

∣∣

l!
<

∞∑

l=2

(
F lt
)
k+N

(l − 1)!
√
k(k +N)

=
1√

k(k +N)

(
Ft(e

Ft − 1)
)
k+N

This proves the statement.

Now we immediately find the following corollary.

Corollary 3.3. With A1 as in (2.9) we have that

∞∑

k=1

k|φk+n|2 <
A1(e

A1 − 1)

n
(3.5)

for all n. The same estimate holds for ψ.
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Proof. Applying Lemma 3.2 with t = φ and N = n, we find

∞∑

k=1

k|φk+n|2 <
‖Fφ(eFφ − 1)‖2

L2

n
.

The statement now follows from the fact that ‖ · ‖L2 ≤ ‖ · ‖W , the fact that W is a
Banach algebra and ‖Fφ‖W ≤ A1.

Now (1.11) follows by combining Corollary 3.3, Lemma 3.1 and (3.1).

3.2 Proof of (1.14)

Next we analyze detTn(b). In this case the identity (3.1) breaks down at two places.
First, the factor in front of the Fredholm-determinant is infinite, since b is not nec-

essarily contained in K
1/2
2 . Second, the operator in the Fredholm-determinant is no

longer of trace class and the determinant is therefore not well-defined. However,
there is no need for such a strong result as (3.1), since a direct analysis on detTn(b)
will suffice.

We will use the notion of regularized determinants. For a trace class operator A
the regularized determinant is defined by

det2 (I +A) = e−TrA det(I +A). (3.6)

One can prove that A 7→ det2 (I + A) is a continuous function defined on a dense
subspace (namely the space of all trace class operators) of the space of Hilbert-
Schmidt operators. Therefore it can be extended and defined for all Hilbert-Schmidt
operators. Moreover, we have that

|det2 (I +A) − 1| ≤ ‖A‖2 exp
(

1
2(‖A‖2 + 1)2

)
, (3.7)

for all Hilbert-Schmidt operators.
We will use the regularized determinant only for matrices, but (3.7) plays a crucial

role. Write

detTn(b) = det(I + Tn(b− 1)) = eTr Tn(b−1)det2 (I + Tn(b− 1)). (3.8)

The proof of (1.14) falls into two parts. First we will show that the Hilbert-Schmidt
norm of Tn(b− 1) tends to 0 as n → ∞, hence the regularized determinant tends to
1. And second, we show that TrTn(b− 1) − C(2) tends to 0 as n→ ∞. Then (1.14)
follows by (3.7) and (3.8).

We start with the trace of Tn(b − 1). We define g
(2)
+ as

∑
|kj |>n

αjz
kj

√
n

and g
(2)
− =

g(2) − g
(2)
+ . Moreover, we let b± = eg

(2)
± .

Lemma 3.4. With A1 as in (2.9) we have that

∣∣∣TrTn(b− 1) − C(2)
∣∣∣ ≤ n(eA1/

√
n − 1)2 −A2

1, (3.9)

for all n ∈ N.
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Proof. First note that TrTn(b− 1) = n(b0 − 1). Now

b0 − 1 =
∑

j≥0

(
eg

(2)
+

)
j

(
eg

(2)
−

)
−j

− 1 =
∑

j≥0

(
eg

(2)
+ − 1

)
j

(
eg

(2)
− − 1

)
−j

=
∞∑

l=1

∞∑

m=1

∑

j≥0

(
g
(2)
+

l
)

j

(
g
(2)
−

m)
−j

l!m!

Since
∑

j>n αjα−j = n
∑

j≥0

(
g
(2)
+

)
j

(
g
(2)
−

)
−j

, we find

1

n

∣∣∣TrTn(b− 1) −
∑

j>n

αjα−j
∣∣∣ =

∣∣∣∣∣∣
b0 − 1 −

∑

j≥0

(
g
(2)
+

)
j

(
g
(2)
−

)
−j

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

∞∑

l=1

∞∑

m=1

∑

j≥0

(
g
(2)
+

l
)

j

(
g
(2)
−

m)
−j

l!m!
−
∑

j≥0

(
g
(2)
+

)
j

(
g
(2)
−
)
−j

∣∣∣∣∣∣∣∣∣

Now apply the Cauchy-Schwarz inequality to obtain

1

n

∣∣∣TrTn(b− 1) −
∑

j>n

αjα−j
∣∣∣ ≤

∞∑

l=1

∞∑

m=1

‖g(2)
+

l
‖L2‖g

(2)
−

m
‖L2

l!m!
− ‖g(2)

+ ‖L2‖g
(2)
− ‖L2

≤
∞∑

l=1

∞∑

m=1

‖g(2)
+

l
‖W ‖g(2)

−
m
‖W

l!m!
− ‖g(2)

+ ‖W ‖g(2)
− ‖W

≤
∞∑

l=1

∞∑

m=1

‖g(2)
+ ‖lW ‖g(2)

− ‖mW
l!m!

− ‖g(2)
+ ‖W ‖g(2)

− ‖W

Now ‖g(2)
± ‖W ≤ A1/

√
n proves the statement.

Next we proceed with the Hilbert-Schmidt norm of Tn(b− 1).

Lemma 3.5. With A1 as in (2.9), we have that

‖Tn(b− 1)‖2 ≤
√
n(eA1/

√
n − 1)2, (3.10)

for all n ∈ N.

Proof. Since (b± − 1)j = 0 for j = −n+ 1, . . . , n− 1 we find

‖Tn(b− 1)‖2
2 ≤ n

n−1∑

j=−n+1

|(b− 1)j |2 = n

n−1∑

j=−n+1

|((b+ − 1)(b− − 1))j |2

≤ n‖(b+ − 1)(b− − 1)‖2
L2

≤ n‖(b+ − 1)(b− − 1)‖2
W

≤ n‖b+ − 1‖2
W ‖b− − 1‖2

W ≤ n(e‖g
(2)
+ ‖W − 1)2(e‖g

(2)
−

‖W − 1)2.

By ‖g2
±‖W ≤ A1/

√
n we obtain the statement.
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By Lemma 3.5 and (3.7) we obtain

lim
n→∞

det2 (I + Tn(b− 1)) = 1. (3.11)

By substituting this in (3.8) and using Lemma 3.4 we obtain (1.14).

3.3 Proof of (1.12)

Since we proved the result for the cases (1.11) and (1.14) in a completely different
way, a natural way to deal with the general case is to split the two cases. To this end
we use a factorization theorem due to Widom

Tn(ab) = Tn(a)Tn(b) + PnH(a)H (̃b)Pn +WnH(ã)H(b)Wn, (3.12)

and the operator Bn defined by

Bn = Tn(a
−1) − PnH(a−1

+ )H(ã−1
− )Pn −WnH(ã−1

− )H(a−1
+ )Wn. (3.13)

The operator Bn is a good approximation of the inverse of Tn(a). In the case that
a does not depend on n, this observation is due to Widom. Moreover, the operator
can be used to prove the strong Szegö limit, see [4, 13]. We will prove that it is also
a good approximation in our case. One can show, see [4, 13], that

BnTn(a) = I + PnH(a−1
+ )H(ã−1

− )QnT (a)Pn +WnH(ã−1
− )H(a−1

+ )QnT (ã)Wn (3.14)

for all n ∈ N. Even in our case where a depends on n, the operators on the right-hand
side are small in trace norm.

Lemma 3.6. We have

‖BnTn(a) − I‖1 = O(n−
1
2 ), (3.15)

for n→ ∞.

Proof. First note that

‖PnH(a−1
+ )H(ã−1

− )QnT (a)Pn‖1 ≤ ‖PnH(a−1
+ )‖2‖H(ã−1

− )Qn‖2‖T (a)Pn‖∞.

Now

‖PnH(a−1
+ )‖2 ≤ ‖H(a−1

+ )‖2 ≤ ‖a−1
+ ‖

B
1/2
2

< exp(
√

2A2),

and

‖T (a)Pn‖∞ ≤ ‖a‖∞ ≤ ‖a‖W ≤ exp(A1),

and finally

‖H(ã−1
− )Qn‖2

2 =

∞∑

k=1

k|(ã−1
− )k+n|2.

By Lemma 3.2 and the same arguments as in Corollary 3.3, the latter is O(n−1), as
n→ ∞. This proves the statement.

10



Therefore the following corollary is immediate.

Corollary 3.7. We have that

lim
n→∞

detBnTn(a) = 1. (3.16)

In view of this corollary, it is enough to show that

lim
n→∞

exp(−C(2)) detBnTn(ab) = 1, (3.17)

to prove (1.12). This will cover the rest of this section.
We will again use the regularized determinant. Write

detBnTn(ab) = eTr(BnTn(ab)−I)det2 BnTn(ab). (3.18)

In view of (3.8) and (3.7), to prove (3.17) it is enough to (1) prove that BnTn(ab)− I
converges to zero in Hilbert-Schmidt norm and (2) calculate its trace.

If we introduce the notations

En = −PnH(a−1
+ )H(ã−1

− )Pn −WnH(ã−1
− )H(a−1

+ )Wn, (3.19)

and
Fn = PnH(a)H (̃b)Pn +WnH(ã)H(b)Wn, (3.20)

and multiply (3.12) from the left with Bn we find by (3.13)

BnTn(ab) = BnTn(a)Tn(b) + Tn(a
−1)Fn + EnFn. (3.21)

We will analyze the three terms on the right-hand side separately. In the following
lemma, we state results about the Hilbert-Schmidt norms and the trace of each of
these three terms, except for the trace of Tn(a

−1)Fn. All the statements follow from
earlier results. However, TrTn(a

−1)Fn is more subtle and needs some extra attention.

Lemma 3.8. We have that

1. ‖BnTn(a)Tn(b) − I‖2 → 0,

2. |Tr(BnTn(a)Tn(b) − I) − C(2)| → 0,

3. ‖EnFn‖1 → 0,

4. ‖Tn(a−1)Fn‖2 → 0,

for n→ ∞.

Proof. 1. We estimate the Hilbert-Schmidt norm by

‖BnTn(a)Tn(b) − I‖2 ≤ ‖
(
BnTn(a) − I

)
Tn(b)‖2 + ‖Tn(b− 1)‖2

≤ ‖BnTn(a) − I‖2‖Tn(b)‖∞ + ‖Tn(b− 1)‖2.

Note that ‖Tn(b)‖∞ ≤ ‖b‖L∞
≤ ‖b‖W . The statement now follows from Lemma

3.5, Lemma 3.6 and (2.8).
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2. Note that

|Tr(BnTn(a)Tn(b) − I) − C(2)|
≤ |Tr ((BnTn(a) − I)Tn(b)) | + |TrTn(b− 1) − C(2)|
≤ ‖ (BnTn(a) − I) ‖1‖Tn(b)‖∞ + |TrTn(b− 1) − C(2)|.

The statement now follows from Lemma 3.4 and Lemma 3.6.

3. First note that ‖EnFn‖1 ≤ ‖En‖2‖Fn‖2. Now

‖Fn‖2 ≤ ‖PnH(a)‖2‖PnH(b̃)‖∞ + ‖WnH(ã)‖2‖H(b)Wn‖∞
≤ ‖a‖

B
1/2
2

‖b− 1‖∞ ≤ ‖a‖
B

1/2
2

‖b− 1‖W

≤ ‖a‖
B

1/2
2

(
exp(A1/

√
n) − 1

)
, (3.22)

with A1 as in (2.9). By combining (3.22) with (2.7) we obtain ‖Fn‖2 → 0. By
similar estimates one finds that ‖En‖2 is bounded in n.

4. This follows from (3.22) and the estimate ‖Tn(a−1)Fn‖2 ≤ ‖Tn(a−1)‖∞‖Fn‖2.
Note that ‖Tn(a−1)‖∞ ≤ ‖a−1‖∞ ≤ ‖a−1‖W and the latter is uniformly bounded
in n.

From this lemma, (3.18), (3.7) and (3.21) it follows that

lim
n→∞

exp
(
− C − Tr(Tn(a

−1)Fn)
)

detBnTn(ab) = 1. (3.23)

Hence it remains to prove that TrTn(a
−1)Fn tends to 0 as n → ∞, which is the

most difficult part of the proof. We start with an estimate that follows from a subtle
cancellation.

Lemma 3.9. There exists a constant D such that

√
n∑

s=−√
n

(
a−1
)
s

(
a
)
N−s ≤

D

n3/4
, (3.24)

for all n,N ∈ N with N > n.

Proof. Let n,N ∈ N with N > n. Define j∗ = sup{j | kj < n}. The proof follows by
an induction-like argument with respect to j∗.

Suppose first that kj∗ is such that N − kj∗ >
√
n/2. In this case split the sum

into two parts

√
n∑

s=−√
n

(
a−1
)
s

(
a
)
N−s =

∑

|s|<√
n/3

(
a−1
)
s

(
a
)
N−s +

∑
√
n/3≤|s|≤√

n

(
a−1
)
s

(
a
)
N−s (3.25)
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The second sum of the right-hand side of (3.25) is estimated by

∣∣∣∣∣∣

∑
√
n/3<|s|<√

n

(
a−1
)
s

(
a
)
N−s

∣∣∣∣∣∣
≤


 ∑

√
n/3<|s|<√

n

|
(
a−1
)
s
|2



1/2
 ∑

√
n/3<|s|<√

n

|
(
a
)
N−s|

2




1/2

=


 ∑

√
n/3<|s|<√

n

|s| |
(
a−1
)
s
|2

|s|




1/2
 ∑

√
n/3<|s|<√

n

|N − s| |
(
a
)
N−s|2

|N − s|




1/2

≤

√
3‖a−1‖

B
1/2
2

‖a‖
B

1/2
2

n1/4
√
N −√

n
≤

√
6‖a−1‖

B
1/2
2

‖a‖
B

1/2
2

n3/4
, (3.26)

where we used that N −√
n ≥ n+ 1 −√

n > n/2. Note that ‖a−1‖
B

1/2
2

and ‖a‖
B

1/2
2

are uniformly bounded in n by (2.7).
The first sum of the right-hand side of (3.25) is estimated in a similar way

∣∣∣∣∣∣

∑

|s|<√
n/3

(
a−1
)
s
(a)N−s

∣∣∣∣∣∣
≤ ‖a−1‖L2


 ∑

|s|<√
n/3

|(a)N−s|2



1/2

.

The term ‖a−1‖L2 is uniformly bounded in n. Applying Lemma 3.2, with t = a, gives

∑

|s|<√
n/3

|(a)N−s|2 <
∑

|s|<√
n/3

|
(
Fa(e

Fa − 1)
)
N−s|

2

(N − s− kj∗)(N − s)

≤ 1

(N −√
n/3 − kj∗)(N −√

n/3)

∑

s<
√
n/3

|
(
Fa(e

Fa − 1)
)
N−s|

2

≤ 18

n3/2
‖
(
Fa(e

Fa − 1)‖L2 ≤ 18

n3/2
‖
(
Fa(e

Fa − 1)‖W

≤ 18

n3/2
A1(e

A1 − 1). (3.27)

By combining (3.25), (3.26) and (3.27) we obtain the statement in the case N−kj∗ >√
n/2.

Now suppose N −kj∗ ≤ √
n/2. We will then show that the terms that come from

j∗ are negligible. To be precise, define

c1 = exp
(
(αj∗z

k∗j + α−j∗z
−kj∗ )/

√
kj∗
)
, (3.28)

a1 = ac−1
1 . (3.29)

We will show that
∣∣∣∣∣∣

√
n∑

s=−√
n

(
a−1
)
s

(
a
)
N−s −

√
n∑

s=−√
n

(
a−1

1

)
s

(
a1

)
N−s

∣∣∣∣∣∣
≤ (|αj∗ | + |α−j∗ |)D1/n, (3.30)
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where D1 is a constant independent of j∗, n and N that can be expressed in terms
of A1 and A2 only. Redefine j∗, now with respect to a1. If N − kj∗ >

√
n/2, then

the above arguments show that (3.24) holds for a1. By combining this with (3.30)
we see that (3.24) also holds for a. If however N − kj∗ <

√
n/2 then we define a2

and c2 as in (3.28) and (3.29) and redefine j∗ with respect to a1. We also have that
the inequality (3.30) holds with a1 replaced by a2, a replaced by a1 and j∗ is with
respect to a1. If N − kj∗ >

√
n/2 then we are again done. Otherwise we continue by

defining a3 and c3 and so on. After a finite number of steps, say m ≤ n+
√
n/2−N ,

we do find N − kj∗ >
√
n/2. At each step l we have the inequality (3.30) with a

replaced by al and a1 replaced by al+1 and j∗ is with respect to al. We can reduce
all the inequalities together to the single inequality

∣∣∣∣∣∣

√
n∑

s=−√
n

(
a−1
)
s

(
a
)
N−s −

√
n∑

s=−√
n

(
a−1
m

)
s

(
am
)
N−s

∣∣∣∣∣∣
≤ D1A1

n
.

Combining this inequality with the fact that the above arguments show that (3.24)
holds for am leads to the statement.

Hence it remains to prove (3.30). First note that

∣∣∣∣∣∣

√
n∑

s=−√
n

(
a−1
)
s

(
a
)
N−s −

√
n∑

s=−√
n

(
a−1

1

)
s

(
a1

)
N−s

∣∣∣∣∣∣
≤ I1 + I2 + I3, (3.31)

where

I1 =

∣∣∣∣∣∣

√
n∑

s=−√
n

(
a−1
)
s

(
a
)
N−s −

√
n∑

s=−√
n

(
a−1

1

)
s

(
a
)
N−s

∣∣∣∣∣∣
=

∣∣∣∣∣∣

√
n∑

s=−√
n

(
a−1

1 (c−1
1 − 1)

)
s

(
a
)
N−s

∣∣∣∣∣∣
,

I2 =

∣∣∣∣∣∣

√
n∑

s=−√
n

(
a−1

1

)
s

(
a
)
N−s −

√
n∑

s=−√
n

(
a−1

1

)
s

(
a1(1 + log c1)

)
N−s

∣∣∣∣∣∣

=

∣∣∣∣∣∣

√
n∑

s=−√
n

(
a−1

1

)
s

(
a1(c1 − 1 − log c1)

)
N−s

∣∣∣∣∣∣
,

and

I3 =

∣∣∣∣∣∣

√
n∑

s=−√
n

(
a−1

1

)
s

(
a1 log c1

)
N−s

∣∣∣∣∣∣
.

The terms I1 and I2 can be estimated by the Cauchy-Schwarz inequality,

I1 ≤ ‖a−1
1 (c−1

1 − 1)‖L2




√
n∑

s=−√
n

∣∣∣
(
a
)
N−s

∣∣∣
2




1/2

≤
‖a−1

1 ‖W ‖c−1
1 − 1‖W ‖a‖

B
1/2
2√

N −√
n

,
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and

I2 ≤ ‖a−1
1 ‖2‖a1(c1 − 1 − log c1)‖2 ≤ ‖a−1

1 ‖W ‖a1‖W ‖c1 − 1 − log c1‖W .

Note that ‖a1‖W , ‖a−1
1 ‖W and ‖a‖

B
1/2
2

are all uniformly bounded in n and N . Now

‖c−1
1 − 1‖W ≤ exp

(
|αj∗ | + |α−j∗ |√

kj∗

)
− 1,

‖c1 − 1 − log c1‖W ≤ exp

(
|αj∗ | + |α−j∗ |√

kj∗

)
− 1 − |αj∗ | + |α−j∗ |√

kj∗
.

Since kj∗ > n/2 it follows that

I1,2 ≤ (|αj∗ | + |α−j∗ |)D2n
−1, (3.32)

for some constant D2.
This brings us to the most important part of the proof, namely estimating I3.

Note that log c1 = (aj∗z
kj∗ + α−j∗z−k

j∗

)/
√
kj∗ . Write

I3 ≤ I31 + I32,

where

I31 =

∣∣∣∣∣∣
αkj∗√
kj∗

√
n∑

s=−√
n

(
a−1

1

)
s

(
a1

)
N−s−kj∗

∣∣∣∣∣∣
, I32 =

∣∣∣∣∣∣
α−kj∗√
kj∗

√
n∑

s=−√
n

(
a−1

1

)
s

(
a1

)
N−s+kj∗

∣∣∣∣∣∣
.

The term I32 can again be estimated by the Cauchy-Schwarz inequality. The result
is that

I32 ≤

√
2|α−kj∗

|‖a−1
1 ‖L2‖a1‖B1/2

2√
kj∗n

≤
2|α−kj∗

|‖a−1
1 ‖L2‖a1‖B1/2

2

n
, (3.33)

where we used the fact that N − s+ kj∗ ≥ n/2 if |s| ≤ √
n and kj∗ ≥ n/2 .

The term I31 is more subtle. Since N > kj∗ we find

√
n∑

s=−√
n

(
a−1

1

)
s

(
a1

)
N−s−kj∗

+
∑

|s|>√
n

(
a−1

1

)
s

(
a1

)
N−s−kj∗

=
∑

s

(
a−1

1

)
s

(
a1

)
N−s−kj∗

= (a−1
1 a1)N−kj∗

= 0.

Therefore

I31 =
|aj∗ |√
kj∗

∣∣∣∣∣∣

∑

|s|>√
n

(
a−1

1

)
s

(
a1

)
N−s−kj∗

∣∣∣∣∣∣
.
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Now we estimate the latter expression by the Cauchy-Schwarz inequality again. Note
that |N − s− kj∗ | >

√
n/2 if |s| > √

n. The result is that

I31 ≤
2|αj∗ |‖a−1

1 ‖
B

1/2
2

‖a1‖B1/2
2

n
√
kj∗

≤
23/2|αj∗ |‖a−1

1 ‖
B

1/2
2

‖a1‖B1/2
2

n3/2
, (3.34)

where we also used kj∗ ≥ n/2. So from (3.32), (3.33) and (3.34) we find

I1,2,3 ≤ (|akj∗
| + |α−kj∗

|)D3/n (3.35)

for some constant D3. Now (3.30) follows by (3.31) and (3.35). This proves the
statement.

Now we can prove the following corollary by fairly direct estimates.

Corollary 3.10. We have that

TrTn(a
−1)PnH(a)H(g̃(2)))Pn = O(n−1/4), (3.36)

for n→ ∞.

Proof. A straightforward calculation leads to

TrTn(a
−1)PnH(a)H(g̃(2)))Pn =

∑

kj>n

α−j√
n

n∑

s=−n
(a−1)s(a)kj−s(n− |s|). (3.37)

We estimate each term in the sum with respect to kj separately. So let kj > n. Write

n∑

s=−n
(a−1)s(a)kj−s(n − |s|) =

√
n∑

s=−√
n

(a−1)s(a)kj−s(n− |s|)

+
∑

√
n<|s|≤n

(a−1)s(a)kj−s(n− |s|). (3.38)

After some preparation, the rightmost sum of the right-hand side of (3.38) can be
estimated by the Cauchy-Schwarz inequality as before

∣∣∣
∑

√
n<|s|≤n

(a−1)s(a)kj−s(n − |s|)
∣∣∣ ≤

∑
√
n<|s|≤n

|(a−1)s(a)kj−s||n− s|

=
∑

√
n<|s|≤n

√
|s||(a−1)s|

√
kj − s |(a)kj−s|

(n− |s|)√
|s|(kj − s)

≤ ‖a−1‖
B

1/2
2

‖a‖
B

1/2
2
n1/4, (3.39)

where we used that

n− |s|√
|s|(kj − s)

≤
√
n− |s|
|s| ≤ n1/4,
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for all
√
n ≤ |s| ≤ n.

Now consider the left sum of the right-hand side of (3.38).

∣∣∣

√
n∑

s=−√
n

(a−1)s(a)kj−s(n− |s|)
∣∣∣ = n

∣∣∣

√
n∑

s=−√
n

(a−1)s(a)kj−s
∣∣∣+
∣∣∣

√
n∑

s=−√
n

|s|(a−1)s(a)kj−s
∣∣∣.

(3.40)

The second sum of the right-hand side of (3.40) can again be estimated by a Cauchy-
Schwarz argument, from which it follows that it is of order n−1/2. The first sum of
the right-hand side of (3.40) can be dealt with by using Lemma 3.9 and therefore

∣∣∣

√
n∑

s=−√
n

(a−1)s(a)kj−s(n− |s|)
∣∣∣ = O(n1/4), (3.41)

for n→ ∞.
Inserting (3.39) and (3.41) in (3.38) and using (3.37) gives

TrTn(a
−1)PnH(a)H(g̃(2)))Pn = O(n−1/4)

∑

kj>n

α−j = O(n−1/4),

for n→ ∞. This proves the statement.

We are almost at the end of our proof. The final thing we need to show is that

the dominant term in TrTn(a)Fn comes from TrTn(a
−1)PnH(a)H(g̃(2)))Pn, which is

small by the previous corollary.

Corollary 3.11.

lim
n→∞

TrTn(a
−1)Fn = 0. (3.42)

Proof. Since W 2
n = Pn and by (2.3) we find

TrTn(a
−1)Fn = TrTn(a

−1)PnH(a)H(b̃)Pn + TrTn(a
−1)WnH(ã)H(b)Wn

= TrTn(a
−1)PnH(a)H(b̃)Pn + TrWnTn(ã−1)PnH(ã)H(b)Wn

= TrTn(a
−1)PnH(a)H(b̃)Pn + TrTn(ã−1)PnH(ã)H(b)Pn.

We will only show that TrTn(a
−1)PnH(a)H(b̃)Pn → 0. The right term tends to 0

by the same arguments. Write

Tn(a
−1)PnH(a)H(b̃)Pn = TrTn(a

−1)PnH(a)H(b̃− g̃(2) − 1)Pn

+ TrTn(a
−1)PnH(a)H(g̃(2))Pn. (3.43)

Since

‖H(b̃− g̃(2) − 1)Pn‖2 ≤
√
n‖b− g(2) − 1‖L2 ≤

√
n
(
e‖g

(2)‖W − ‖g(2)‖W − 1
)
,
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and ‖g(2)‖W ≤ A1/
√
n it follows that

|TrTn(a
−1)PnH(a)H (̃b − g̃(2) − 1)Pn| ≤ ‖Tn(a−1)PnH(a)H(b̃− g̃(2) − 1)Pn‖1

≤ ‖Tn(a−1)‖∞‖PnH(a)‖2‖H(b̃− g̃(2) − 1)Pn‖2 = O(n−
1
2 ),

for n → ∞. By combining this with (3.43) we see that it only remains to estimate

TrTn(a
−1)PnH(a)H(g̃(2))Pn, which was done in Corollary 3.10. This proves the

statement.

Now (1.12) follows from Corollary 3.11 and (3.23).

4 Proof of Theorem 1.1

We will now show how the condition
∑ |αj | < ∞ can be made obsolete when we

assume that α−j = αj. Let m ∈ N. We split Xn into two parts

Xn = Xn,m + Yn,m =
∑

0<|j|≤m

αj√
min(|kj |, n)

TrUkj +
∑

|j|>m

αj√
min(|kj |, n)

TrUkj .

(4.1)
Since both Xn,m and Yn,m are real we find that

∣∣E[eiXn ] − E[eiXn,m ]
∣∣ =

∣∣∣E[ei(Xn,m+Yn,m) − E[eiXn,m]
∣∣∣ ≤ E[

∣∣eiYn,m − 1
∣∣]

≤ E[|Yn,m|] ≤ E[|Yn,m|2]1/2 =


∑

|j|>m
|αj |2




1/2

. (4.2)

In the last expression we used the fact that the elements 1√
min(|kj |,n)

TrUkj are or-

thonormal with respect to the Haar measure on U(n). It follows that

lim sup
∣∣∣E[ei(Xn,m+Yn,m) − E[eiXn,m ]

∣∣∣ ≤


∑

|j|>m
|αj |2




1/2

. (4.3)

Since
∑

|j|≤m |αj | <∞, it follows by Theorem 1.2 and (1.5) that

lim
n→∞

E[eiXn,m ] = e−
Pm

j=1 |αj |2 . (4.4)

Hence

lim sup
n→∞

∣∣∣E[ei(Xn,m+Yn,m) − e−
P

∞

j=1 |αj |2
∣∣∣ ≤ lim sup

n→∞

∣∣∣E[ei(Xn,m+Yn,m) − E[eiXn,m ]
∣∣∣ (4.5)

+ lim sup
n→∞

∣∣∣E[eiXn,m ] − e−
Pm

j=1 |αj |2
∣∣∣+
∣∣∣e−

Pm
j=1 |αj |2 − e−

P

∞

j=1 |αj |2
∣∣∣ (4.6)

≤


∑

|j|>m
|αj |2




1/2

+
∣∣∣e−

Pm
j=1 |αj |2 − e−

P

∞

j=1 |αj |2
∣∣∣ . (4.7)

If we let m→ ∞ the right-hand side tends to zero.
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5 Some comments on more general n-dependence

The n-dependence in the symbols we consider is of a special type. Let U be a n× n
unitary matrix randomly chosen with respect to the Haar measure. Consider the
random variable Xn by

Xn(U) =
∑

|j|>0

αj(n)√
min(|kj(n)|, n)

TrUkj(n), (5.1)

where αj(n) now also depends on n. Again we assume that for each n we have that

αj(n) = α−j(n), {kj(n)}j∈N is a sequence of mutually distinct positive integers and
k−j(n) = −kj(n). Define

σ2
n = 2

∞∑

j=1

|αj(n)|2, (5.2)

and assume that σn → σ as n → ∞ for some σ. A natural question is now under
what conditions it is still true that

lim
n→∞

E[eitXn ] = e−tσ
2/2. (5.3)

Since then Xn converges to a complex normal with mean zero and variance σ2.
Although, it is known in some cases that it is true, it will not hold in general.

We will illustrate the subtleties that are involved by an explicit example inspired
on [12]. Let f be a C∞ function with support within [−π, π] and let 0 < γ ≤ 1.
Define kj(n) = j and

αj(n) =

√
min(|j|, n)

2πnγ
f̂(j/nγ), (5.4)

for all j and n. Here f̂ stands for the Fourier transform of f . We assume that

f̂(0) =

∫

R

f(x) dx = 0. (5.5)

The random variable Xn can now be rewritten as

Xn(U) =

n∑

µ=1

f(nγθµ). (5.6)

Since f has compact support Xn only depends on a few eigenvalues, for which θµ is
close to zero. If 0 < γ < 1, then it is true that Xn → N(0, σ2), where

σ2 =
1

4π2

∫
|y||f̂(y)|2 dy, (5.7)

assuming that the latter is finite. This is proved by Soshnikov [12].
However, the result does not longer hold for γ = 1. This case is considered by

Hughes and Rudnick in [9] and for the classical compact groups other then U(n)
in [10]. In these works the authors analyzed the limiting behavior of the moments
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E(Xm
n ) for m ∈ N and proved that in general the limiting value of the moments

depend on f and are certainly not Gaussian moments. Hence a result like (5.3) can
not hold. However, if supp f̂ ⊂ [−2/m, 2/m] then the m-th moment does converge
to the m-th moment of the normal distribution with mean zero and variance

σ2 =
1

4π2

∫ ∞

−∞
min(|y|, 1)|f̂ (y)|2 dy. (5.8)

This phenomenon is called mock-Gaussian behavior in [9].
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