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FORMALITY THEOREMS FOR HOCHSCHILD CHAINS IN THELIE ALGEBROID SETTINGDAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUT
Abstrat. In this paper we prove Lie algebroid versions of Tsygan's formalityonjeture for Hohshild hains both in the smooth and holomorphi settings.Our result in the holomorphi setting implies a version of Tsygan's formalityonjeture for Hohshild hains of the struture sheaf of any omplex ma-nifold. The proofs are based on the use of Kontsevih's quasi-isomorphismfor Hohshild ohains of R[[y1, . . . , yd]], Shoikhet's quasi-isomorphism forHohshild hains of R[[y1, . . . , yd]], and Fedosov's resolutions of the naturalanalogues of Hohshild (o)hain omplexes assoiated with a Lie algebroid.In the smooth setting we disuss an appliation of our result to the desriptionof quantum traes for a Poisson Lie algebroid.
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2 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUTIntrodutionLie algebroids and Lie groupoids provide a natural framework for developinganalysis on di�erentiable foliations and manifolds with orners [24℄, [25℄, [27℄, [38℄.This motivates our interest to the natural analogues of Hohshild and yli (o)ho-mologial omplexes in the setting of Lie algebroids and to the orresponding ana-logues of the Kontsevih-Tsygan formality onjetures. Thus the formality theoremfor the di�erential graded Lie algebra (DGLA) of Hohshild ohains in the Liealgebroid setting [1℄ allows us to quantize an arbitrary Poisson Lie algebroid1. Theformality of the DGLA module of Hohshild hains in the Lie algebroid settingwould give a desription of the quantum traes for Poisson Lie algebroids, and theformality of the yli omplex in the setting of Lie algebroids would imply thealgebrai index theorem [26℄, [32℄ for the deformations assoiated with an arbitraryPoisson Lie algebroid.An appropriate analogue of the Hohshild ohain (resp. hain) omplex asso-iated with a Lie algebroid E is the omplex of E-polydi�erential operators (resp.Hohshild E-hains) (see de�nitions 1.9 and 1.14 in the next setion). It turnsout that the omplex of E-polydi�erential operators is naturally a DGLA and theomplex of E-hains is naturally a DG module over this DGLA. Due to the reentresult [1℄ of the �rst author for any Lie algebroid E over a smooth manifold theDGLA of E-polydi�erential operators is formal.In this paper we use Kontsevih's [20℄ and Shoikhet's [29℄ formality theoremsfor R
d
formal and the `Fedosov-like' [12℄ globalization tehnique [3, 9, 10, 26℄ toprove that for any Lie algebroid E over a smooth manifold (resp. holomorphiLie algebroid over a omplex manifold) the DGLA module of E-hains (resp. thesheaf of DGLA modules of E-hains) is formal. In the smooth setting this resultallows us to desribe quantum traes for an arbitrary Poisson Lie algebroid. In theholomorphi setting this result implies a version of Tsygan's formality onjeturefor Hohshild hains of the struture sheaf of any omplex manifold.Eliminating the sheaf of Hohshild E-hains in the holomorphi setting we getthat for any holomorphi Lie algebroid E the sheaf of E-polydi�erential operators isformal as a sheaf of DGLAs. In partiular, this result implies Kontsevih's formalitytheorem for omplex manifolds, the proof of whih was formulated only for algebraivarieties [39℄.The paper is organized as follows. In the �rst setion we reall some basifats about Lie algebroids and de�ne algebrai strutures on the omplexes of E-polydi�erential operators and E-polyjets of an algebroid E. We reall Kontsevih's[20℄ and Shoikhet's [29℄ formality theorems for R

d
formal and formulate our �rstresult, the formality of the module of E-hains (see theorem 2.2 on page 12). Theseond setion is devoted to the onstrution of the Fedosov resolutions of thesheaves of E-polydi�erential operators, E-hains, E-polyvetor �elds and E-forms.It is the most tehnial part of the paper. Using these resolutions in setion 3, weprove theorem 2.2. In the same setion we apply this theorem to the desription ofquantum traes of Poisson Lie algebroids. In setion 4 we prove Tsygan's formalityonjeture for Lie algebroid hains in the holomorphi setting (see theorem 5.2 onpage 31), whih, in partiular, gives us the formality theorem for Hohshild hains1Aording to the terminology of P. Xu [37℄ we have to all this objet a triangular Lie bial-gebroid. However, sine we do not mention the bialgebroid struture, we refer to this objet as aPoisson Lie algebroid.



FORMALITY THEOREMS FOR LIE ALGEBROID CHAINS 3of the struture sheaf of an arbitrary omplex manifold (see theorem 5.4) In theonluding setion we mention an equivariant version of theorem 2.2 and raise someother questions.Notations. We assume Einstein's onvention for the summation over repeatedindies and omit the symbol ∧ referring to a loal basis of exterior forms. Thearrow ≻→ denotes an L∞-morphism of L∞-algebras, the arrow ≻≻→ denotes amorphism of L∞-modules, and the notation
L
↓mod

Mmeans thatM is an L∞-module over the L∞-algebra L . The abbreviation �DGLA�stands for �di�erential graded Lie algebra� and the abbreviation �DGA� stands for�di�erential graded assoiative algebra�. Throughout the paper (exept setion 5)we work over the �eld R of real numbers: unless otherwise spei�ed, M denotesa smooth real manifold, OM denotes the sheaf of real valued C∞-funtions on Mand vetor bundles are real vetor bundles. Finally, we denote by the same symbola vetor bundle and its sheaf of setions.Aknowledgements. We would like to thank G. Felder and A. Cattaneo for theirinterest to this work. The seond author is partially supported by the NSF grantDMS-9988796, the Grant for Support of Sienti� Shools NSh-1999.2003.2 and thegrant CRDF RM1-2545-MO-03.1. Algebrai strutures assoiated with a Lie algebroid1.1. Lie algebroids and assoiated sheaves. Let us reall the followingDe�nition 1.1. A Lie algebroid over a smooth manifold M is a smooth vetorbundle E of �nite rank whose sheaf of setions is a sheaf of Lie algebras equippedwith a OM -linear morphism of sheaves of Lie algebras
ρ : E → TM .The OM -module struture and the Lie algebra struture on the sheaf E are ompa-tible in the following sense: for any open subset U ⊂M , any funtion f ∈ OM (U)and any setions u, v ∈ Γ(U, E)(1.1) [u, fv] = f [u, v] + ρ(u)(f)v .The map ρ is alled the anhor.Examples. 1. The tangent bundle TM on M is the simplest example of a Liealgebroid. The braket is the usual Lie braket of vetor �elds and the anhor isthe identity map id : TM → TM .2. More generally any involutive distribution (i.e. regular foliation) E ⊂ TM isa Lie algebroid over M .3. A Lie algebroid over a point is simply a �nite dimensional Lie algebra.



4 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUT1.1.1. The sheaf of E-polyvetor �elds.De�nition 1.2. The bundle ET ∗
poly of E-polyvetor �elds is the exterior algebraof the bundle E with the shifted grading(1.2) ET ∗

poly =
⊕

k≥−1

ET k
poly , ET k

poly := ∧k+1E .It turns out that the Lie braket [ , ] on setions of ET 0
poly = E an be naturallyextended to a Lie braket on setions of the whole vetor bundle ET ∗

poly of E-polyvetors (it was notied in [2℄). Indeed, �rst, we de�ned a Lie braket [ , ]SN onhomogeneous setions of low degree as follows:(1.3) [f, g]SN := 0 , [u, f ]SN := ρ(u)f , and [u, v]SN := [u, v] .

∀ f, g ∈ OM (U), u, v ∈ Γ(U, E)Next, we extend [ , ]SN to setions of ET ∗
poly (i.e. E-polyvetor �elds) by requiringthe graded Leibniz rule with respet to the ∧-produt:(1.4) [u, v ∧ w]SN = [u, v]SN ∧w + (−1)k(l+1)v ∧ [u, w]SN ,

∀ u ∈ Γ(U, ET k
poly), v ∈ Γ(U, ET l

poly), w ∈ Γ(U, ET ∗
poly).In the simplest example E = TM the Lie braket [ , ]SN oinides with the wellknown Shouten-Nijenhuis braket of ordinary polyvetor �elds.1.1.2. The sheaf of E-di�erential forms.The exterior algebra ∧∗E∨ of the dual bundle E∨ to E is a natural andidate forthe bundle EΩ∗

M of E-di�erential forms. Setions of EΩ∗
M (E-forms for short) areendowed with the following E-de Rham di�erential

Edω(σ0, . . . , σk) :=
∑

i

(−1)iρ(σi)ω(σ0, . . . , σ̂i, . . . , σk)(1.5)
+

∑

i<j

(−1)i+jω([σi, σj ], σ0, . . . , σ̂i, . . . , σ̂j , . . . , σk) ,

σi ∈ Γ(U, E) .Another operation de�ned onE-forms is the ontration with E-polyvetor �elds.For a E-polyvetor �eld u ∈ Γ(U, ET k
poly) we denote by ιu the ontration with

u . Using this ontration, the E-de Rham di�erential (1.5), and the Cartan-Weilformula(1.6) ELu := Ed ◦ ιu + (−1)kιu ◦
Edwe de�ne the E-Lie derivative of E-forms (over an open subset U) by the E-polyvetor �eld u ∈ Γ(U, ET k

poly).For our purposes it is more onvenient to use the reversed grading in the bundleof E-forms. Thus we denote by(1.7) EA∗ = EΩ−∗
Mthe orresponding bundle with reversed grading and observe that EA∗ is equippedwith a struture of a graded module over the sheaf of graded Lie algebras ET ∗

polyvia the E-Lie derivative (1.6). Namely,



FORMALITY THEOREMS FOR LIE ALGEBROID CHAINS 5Lemma 1.3. For any u ∈ Γ(U, ET k
poly) and v ∈ Γ(U, ET l

poly) one has(1.8) ELu ◦
ELv − (−1)klELv ◦

ELu = EL[u,v]SN
.Proof. First, it is immediate from the de�nition (1.6) that for any u ∈ Γ(U,ET k

poly)(1.9) Ed ◦ ELu = (−1)kELu ◦
Ed .Seond, we laim that for any v ∈ Γ(U, ET l

poly) we have(1.10) ELu ◦ ιv − (−1)k(l+1)ιv ◦
ELu = (−1)kι[u,v]SN

.Using (1.9) and (1.10) it is not hard to show that
ELu(Edιv +(−)lιv

Ed)− (−)kl(Edιv +(−)lιv
Ed)ELu = (Edι[u,v]SN

+(−)k+lι[u,v]SN

Ed) .Thus it su�es to prove that equation (1.10) holds.The proof of (1.10) goes as follows. First, diret omputations show that (1.10)holds for any setions u and v of the subsheaf ET−1
poly ⊕

ET 0
poly . Seond, usingthe Leibniz rule (1.4) we prove the desired identity by indution on the degrees of

E-polyvetor �elds u and v. In doing this, we need another simple identity
ELu1∧u2

= ELu1
ιu2
− (−1)k1ιu1

ELu2
, ∀ ui ∈ Γ(U, ET ki

poly) ,whih follows easily from the fat that ιu1∧u2
= ιu1

◦ ιu2
. �1.1.3. The sheaf of E-di�erential operators.One an also de�ne the (left) OM -module UE of E-di�erential operators to be thesheaf of algebras loally generated by funtions and E-vetor �elds. More preisely,

UE is the sheaf assoiated with the following presheaf(1.11) U 7−→

T
(

OM (U)⊕ Γ(U, E)
)

/













f ⊗ g − fg, f ⊗ u− fu,
u⊗ f − f ⊗ u− ρ(u)f,
u⊗ v − v ⊗ u− [u, v],















f, g ∈ OM (U), u, v ∈ Γ(U, E) .As a sheaf of OM -modules, UE is endowed with an inreasing �ltration(1.12) OM = UE0 ⊂ UE1 ⊂ UE2 ⊂ · · · ⊂ UE ,whih is de�ned by assigning the degree 1 to the E-polyvetor �elds.In the terminology of [28℄ E is a sheaf of Lie-Rinehart algebras over the struturesheaf OM and UE is its universal enveloping algebra. Besides the fat that UEis a sheaf of algebras, UE is also equipped with a oassoiative OM -linear map
∆ : UE → UE ⊗OM

UE whih is de�ned as follows
∆(f) = f ⊗ 1 = 1⊗ f ,(1.13) ∆(u) = u⊗ 1 + 1⊗ u, ∆(PQ) = ∆(P )∆(Q) ,

∀ u ∈ Γ(U, E), P, Q ∈ Γ(U,UE) .Remark. For any u ∈ Γ(U,OM ⊕ E) one an see that a lift of ∆(u) lies in thenormalizor N(IU ) of the right ideal IU generated by f ⊗ 1− 1⊗ f , f ∈ OM (U), in
Γ(U,UE⊗RUE). Therefore ∆ takes values in a sheaf of algebras (the one assoiated



6 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUTto the presheaf of algebras U 7→ N(IU )/IU ); hene ∆(PQ) = ∆(P )∆(Q) is well-de�ned.Moreover the anhor ρ extends to a (left) OM -linear morphism of sheaves of(assoiative) algebras ρ : UE → End(OM ). In the terminology of [37℄ (UE, ∆, ρ) isa sheaf of Hopf algebroids with anhor.Notie that, in the simplest example E = TM of the Lie algebroid UE is thesheaf of di�erential operators on M . In this ase ∆(P ) is the bidi�erential operator
(f, g) 7→ P (fg).The following result shows that UE is an ind-�nite dimensional vetor bundleover M .Proposition 1.4 ([27, 28℄). UE ∼= S(E) as sheaves of (left) OM -modules.1.2. Lie algebroids onnetions. By the word onnetion on a vetor bundle Bover M we always mean E-onnetion, that is a linear operator(1.14) ∇ : Γ(M, B)→ EΩ1(M, B)satisfying the following equation(1.15) ∇(fu) = Ed(f)u + f∇(u)for any f ∈ OM (M) and u ∈ Γ(M, B).Loally, ∇ is ompletely determined by its Christophel's symbols Γk

ij . Namely,let (e1, . . . , er) and (ξ1, . . . , ξr) be dual loal basis of E and E∨ respetively, and
(b1, . . . , bs) be a loal base of B, then(1.16) ∇(bj) = ξiΓk

ijbkFor any u ∈ Γ(M, E) we denote by ∇u the assoiated map Γ(M, B)→ Γ(M, B).Remark. As with usual onnetions, one an extend this ovariant derivative on
E-tensor in a unique way suh that ∇u is a derivation with respet to the tensorprodut of E-tensors, ommutes with the ontration of E-tensors, ats as ρ(u) onfuntions, and is R-linear.De�nition 1.5. The urvature R of a onnetion ∇ with value in B is the setion
R of the bundle E∨ ⊗ E∨ ⊗ B∨ ⊗ B de�ned by(1.17) R(u, v)w =

(

∇u∇v −∇v∇u −∇[u,v]

)

wfor any u, v ∈ Γ(M, E) and w ∈ Γ(M, B).Loally, the urvature is given by
R(ei, ej)bk = (Rij)

l
kblwith(1.18) (Rij)

l
k = Γl

imΓm
jk − Γm

ikΓl
jm + ρ(ei) · Γ

l
jk − ρ(ej) · Γ

l
ik − cm

ij Γl
mkFor a onnetion ∇ on E itself one has the followingDe�nition 1.6. The torsion T of ∇ is a E-tensor of type (1, 2) de�ned by(1.19) T (u, v) = ∇uv −∇vu− [u, v]for any u, v ∈ Γ(M, E).



FORMALITY THEOREMS FOR LIE ALGEBROID CHAINS 7One an write the loal oe�ients of this tensor very easily:(1.20) T k
ij = Γk

ij − Γk
ji − ck

ijProposition 1.7. A torsion free onnetion on E exists.Proof. Let (Uα)α be a over of M by trivializing opens for E. On eah Uα onehas a base (ei)i of setions and then an de�ne ∇(α)
ei ej = 1

2 [ei, ej ]. Let (fα)α bepartition of unity for (Uα)α and de�ne ∇ = fα∇
(α). ∇ is a torsion free onnetionon E. �Proposition 1.8 (Bianhi's identities). Let ∇ be onnetion on E. For any

u, v, w ∈ Γ(M, E) one has(1.21) ∇uR(v, w) + R(T (u, v), w) + c.p.(u, v, w) = 0and(1.22) R(u, v)w − T (T (u, v), w)−∇uT (v, w) + c.p.(u, v, w) = 0Proof. See for example [15℄. �1.3. Algebrai strutures on E-polydi�erential operators and E-polyjets.1.3.1. The sheaf of E-polydi�erential operators.De�nition 1.9. The (ind-�nite dimensional) graded bundle ED∗
poly of E-polydi�erentialoperators is the tensor algebra of the bundle UE with a shifted grading:

ED∗
poly =

⊕

k≥−1

EDk
poly , EDk

poly = ⊗k+1
OM
UE .It is easy to see that in the ase E = TM the sheaf ED∗

poly is the sheaf ofpolydi�erential operators on M .Using the oprodut (1.13) in UE we endow the graded sheaf ED∗
poly of E-polydi�erential operators with a Lie braket [, ]G. To introdue this braket we �rstde�ne the following bilinear produt of degree 0

• : EDpoly ⊗
EDpoly →

EDpoly ,

(1.23) P •Q =

|P |
∑

i=0

(−1)i|Q|
(

1⊗i ⊗∆(|Q|) ⊗ 1⊗|P |−i
)

(P ) · (1⊗i ⊗Q⊗ 1⊗|P |−i) ,

P•f =

|P |
∑

i=0

(−1)i(1⊗i ⊗ ρ⊗ 1⊗|P |−i)(P )(1⊗i ⊗ f ⊗ 1⊗|P |−i) ,

f•g = 0 , f•P = 0 ,for any P, Q ∈ Γ(U, ED≥0
poly) and f, g ∈ Γ(U, ED−1

poly) = OM (U) . Here ∆(n) =

(∆⊗ 1⊗n−1) ◦ · · · ◦∆, ∆(0) is by onvention the identity map.Remark. Let I be the right ideal in UE⊗k generated by 1⊗i−1⊗f⊗1⊗k−i−1⊗i⊗
f ⊗ 1⊗k−i−1, where i = 1, . . . , k − 1 and f ∈ OM . The sheaf of algebras N(I)/Iats on any tensor produt V1 ⊗OM

· · · ⊗OM
Vk over OM of left UE-modules Vi's.Sine ∆(r−1) obviously takes values in N(I)/I then equation (1.23) is well-de�ned.Although the bilinear produt is not assoiative, the graded ommutator(1.24) [P, Q]G = P •Q− (−1)|P ||Q|Q • P , P, Q ∈ Γ(U, ED∗

poly) .



8 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUTde�nes a graded Lie braket between the E-polydi�erential operators.It is not hard to see that in the ase E = TM the above braket redues to thewell known Gerstenhaber braket [16℄ between polydi�erential operators on M .Notie that an element 1 ⊗ 1 ∈ Γ(M, ED1
poly) is distinguished by the followingremarkable identity [1 ⊗ 1, 1 ⊗ 1]G = 0 . Using this observation we de�ne thefollowing di�erential(1.25) ∂ = [1⊗ 1, ]G : ED∗
poly →

ED∗+1
polyon the sheaf of E-polydi�erential operators.By de�nition we see that ∂ is ompatible with the Lie braket (1.24). Thus,

(ED∗
poly, ∂, [, ]G) is a sheaf of di�erential graded Lie algebras (DGLA for short).We would like to mention that the tensor produt of setions (over OM ) turnsthe sheaf EDpoly[−1]∗ with the shifted grading into a sheaf of graded assoiativealgebras. Moreover, it is not hard to see that the di�erential ∂ (1.25) is ompatiblewith this produt. Thus ED∗

poly an be also viewed as a sheaf of DG assoiativealgebras (DGA).Remark. Notie that this onstrution works not only for UE but for any (sheafof) Hopf algebroid with anhor. Below, we use the fat that any morphism of Hopfalgebroids with anhor indues a morphism between the orresponding DGLAs(resp. DGAs).1.3.2. The sheaf of E-polyjets.De�nition 1.10. The bundle EJpoly
∗ of E-polyjets is the following graded bundleplaed in nonnegative degrees

EJpoly
∗ =

⊕

k≥0

EJpoly
k , EJpoly

k := HomOM
(UE

⊗k+1

OM ,OM ) .Sine the sheaf ED∗
poly of E-polydi�erential operators is an ind-�nite dimensionalgraded vetor bundle the sheafEJpoly

∗ of E-polyjets is a pro�nite dimensional gradedvetor bundle. Furthermore, the sheaf EJpoly
∗ is endowed with a anonial �atonnetion ∇G whih is alled the Grothendiek onnetion and de�ned by theformula(1.26) ∇G

σ (j)(P ) := ρ(σ)(j(P )) − j(σ•P ) ,where σ ∈ Γ(U, E), j ∈ Γ(U, EJpoly
k ), P ∈ Γ(U, EDk

poly), and the operation • isde�ned in (1.23).For this onnetion we have the following standardProposition 1.11. Let χ be a map of sheaves
χ : EJpoly

k →

{

EJpoly
k−1 , if k > 0 ,

OM , if k = 0de�ned by the formula(1.27) χ(a)(P ) = a(1 ⊗ P ) , P ∈ Γ(U, EDk−1
poly) , a ∈ Γ(U, EJpoly

k ) .



FORMALITY THEOREMS FOR LIE ALGEBROID CHAINS 9The restrition of the map χ to the ∇G-�at E-polyjets gives the isomorphism ofsheaves(1.28) χ : ker∇G ∩ EJpoly
k

∼
→

{

EJpoly
k−1 , if k > 0 ,

OM , if k = 0 .Proof. To see that the map (1.28) is surjetive one has to notie that for any E-polyjet b of degree k − 1 (resp. any funtion b) the equations
a(1 ⊗ P ) = b(P ) , P ∈ Γ(U, EDk−1

poly)and(1.29) a(u ·Q⊗ P ) = ρ(u)a(Q⊗ P )− a(Q⊗ (∆(k−1)(u) · P )) ,

Q ∈ Γ(U,UE) , u ∈ Γ(U, E)de�ne a ∇G-�at E-polyjet a of degree k (resp. a ∇G-�at E-jet a) .On the other hand, if a is a ∇G-�at E-polyjet of degree k equation (1.29) isautomatially satis�ed. Thus a is uniquely determined by its image χ(a). �Let t be the yli permutation ating on the sheaf EJpoly
∗ of E-polyjets(1.30) t(a)(P0 ⊗ · · · ⊗ Pl) := a(P1 ⊗ · · · ⊗ Pl ⊗ P0) ,

a ∈ Γ(U, EJpoly
l ) , Pi ∈ Γ(U,UE) .Using this operation and the bilinear produt (1.23) we de�ne the map

ES : EDk
poly ⊗

EJpoly
l → EJpoly

l−k ,

P ⊗ a 7→ ESP (a)suh that for P ∈ Γ(U, EDk
poly), a ∈ Γ(U, EJpoly

l ), and Q ∈ Γ(U, EDl−k
poly),(1.31) ESP (a)(Q) = a(Q•P )+

k
∑

j=1

(−1)ljtj(a)
(

(∆(k)⊗1⊗(l−k))(Q)·(P⊗1⊗(l−k))
)

.Due to the following proposition the map ES de�nes an ation of the sheaf of gradedLie algebras ED∗
poly of E-polydi�erential operators on the graded sheaf EJpoly

∗ of
E-polyjets. Namely,Proposition 1.12. For any pair P1, P2 ∈ Γ(U, ED∗

poly) of E-polydi�erential oper-ators and any E-polyjet a ∈ Γ(U, EJpoly
∗ )(1.32) ESP1

ESP2
(a)− (−1)|P1||P2|ESP2

ESP1
(a) = ES[P1,P2]G(a) .Moreover, the ation (1.31) is ompatible with the Grothendiek onnetion (1.26)(1.33) ∇G

u

(

ESP1
(a)

)

= ESP1
(∇G

u (a)) , u ∈ Γ(U, E) .Proof. It is not hard to show that(1.34) ESP1

ESP2
(a) = ESP1•P2

(a) + H(P1, P2)(a) + (−1)|P1||P2|H(P2, P1)(a) ,where2
H(P1, P2) : EJpoly

∗ → EJpoly

∗−|P1|−|P2|2Formula (1.34) is essentially borrowed from paper [17℄ of E. Getzler.



10 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUTis a graded OM -linear endomorphism of the sheaf EJpoly
∗ de�ned by the followingformula

(H(P1, P2)(a))(Q) =
∑

i,j

(−1)i|P1|+j|P2|a
[

(1⊗i ⊗∆|P1| ⊗ 1⊗(j−i−|P1|−1) ⊗∆|P2| ⊗ 1⊗(n−j−|P2|)(Q))·

(1⊗i ⊗ P1 ⊗ 1⊗(j−i−|P1|−1) ⊗ P2 ⊗ 1⊗(n−j−|P2|))
]

+
∑

k,l

(−1)k|P2|+l(n−|P2|)tl(a)
[

(∆|P1| ⊗ 1k+l−|P1|−1 ⊗∆|P2| ⊗ 1⊗n−k−l−|P2| (Q))·

P1 ⊗ 1⊗(k+l−|P1|−1) ⊗ P2 ⊗ 1⊗(n−k−l−|P2|)
]

,the sums run over all i, j, k, l satisfying the onditions
0 ≤ i ≤ j − |P1| − 1, j ≤ n− |P2| ,

1 ≤ l ≤ |P1|, |P1| − l + 1 ≤ k ≤ n− |P2| − l ,and
Q ∈ Γ(U, ED

n−|P1|−|P2|
poly ) .Equation (1.34) obviously implies identity (1.32).Equation (1.33) follows immediately from the fat that the oprodut (1.13)is ompatible with the multipliation of the E-di�erential operators and the fatthat the Grothendiek onnetion (1.26) ommutes with the yli permutation(1.30). �Like in the ase of E-polydi�erential operators the element 1⊗1 ∈ Γ(M,ED1

poly)is (satisfying [1⊗ 1, 1⊗ 1]G = 0) allows us to de�ne the following di�erential(1.35) b := ES1⊗1 : EJpoly
∗ → EJpoly

∗−1on the sheaf of E-polyjets.From the de�nition of the di�erentials (1.25), (1.35) and equation (1.32), we seethat b is ompatible with the ation (1.31) in the sense of the following equation
b

(

ESP (a)
)

= ES∂P (a) + (−)|P | ESP (b(a)) .

∀ a ∈ Γ(U, EJpoly
∗ ) , P ∈ Γ(U, ED∗

poly) .Thus, (EJpoly
∗ , b,ES) is a sheaf of di�erential graded modules (DG modules for short)over ED∗

poly.1.3.3. Hohshild E-hains.The omplex of sheaves (EJpoly
∗ , b) is not a good andidate for the Hohshildhain omplex in the Lie algebroid setting. Indeed, if our Lie algebroid E is TMthen the omplex (EJpoly

∗ , b) boils down to the Hohshild hain omplex of OMwithout the zeroth term and the ation (1.31) does not oinide with the standardation of Hohshild ohains on Hohshild hains (see eq. (3.4) in [10℄). To urethese problems simultaneously we introdue a graded sheaf ECpoly
∗ of OM -modulesplaed in non-positive degrees(1.36) ECpoly

k =

{

OM , if k = 0 ,
EJpoly

−k−1 , if k < 0 .



FORMALITY THEOREMS FOR LIE ALGEBROID CHAINS 11and the following R-linear isomorphism of sheaves(1.37) ̺ : ECpoly
∗ → ker∇G ∩ EJpoly

−∗obtained by inverting the map (1.28).Due to propositions 1.12 the ation (1.31) and the di�erential b (1.35) ommutewith the Grothendiek onnetion ∇G. Thus, the ∇G-�at E-polyjets form a sheafof DG submodule of ( EJpoly
∗ , b, ES) over the sheaf of DGLAs ( ED∗

poly, ∂, [, ]G) .Combining this observation with proposition 1.11 we onlude that the isomorphism(1.37) allows us to endow the sheaf (1.36) with a struture of a sheaf of DG modulesover the sheaf of DGLAs ED∗
poly. Namely,Proposition 1.13. The map(1.38) ER• : EDk

poly ⊗
ECpoly

l → ECpoly
k+lgiven by the formula(1.39) ERP (a) = χESP (̺(a)), P ∈ Γ(U, EDk

poly), a ∈ Γ(U, ECpoly
l )and the di�erential(1.40) b(a) = χES1⊗1(̺(a)) : ECpoly

∗ → ECpoly
∗+1turn ECpoly

∗ (1.36) into a sheaf of DG modules over the sheaf of DGLAs ED∗
poly . 2Remark 1. Sine the map ̺ is NOT OM -linear the DGLA module struture (1.39),(1.40) on ECpoly

∗ is only R-linear unlike the DGLA module struture (1.31) (1.35)on the sheaf EJpoly
∗ .Remark 2. It is not hard to see that in the ase E = TM the global setions ofthe sheaf ECpoly

∗ give the jet version [35℄ of the homologial Hohshild omplex ofthe algebra OM of funtions on M .The seond remark motivates the following de�nition:De�nition 1.14. We refer to the sheaf ECpoly
∗ of DG modules over the sheaf ofDGLAs ED∗

poly of E-polydi�erential operators as the sheaf of the Hohshild E-hains (or just E-hains for short).2. The formality theorem for E-hains2.1. Hohshild-Kostant-Rosenberg. The ohomology of the omplexes ED∗
polyand ECpoly

∗ are desribed by Hohshild-Kostant-Rosenberg type theorems. Theoriginal version of this theorem [19℄ says that the module of Hohshild homologyof a smooth a�ne algebra is isomorphi to the module of exterior forms of theorresponding a�ne variety. In [4℄ A. Connes proved an analogous statement forthe algebra of smooth funtions on any ompat real manifold, and in [34℄, N.Teleman was able to get rid of the assumption of ompatness. The similar questionabout Hohshild ohomology turns out to be tratable if we replae the Hohshildohains by polydi�erential operators. We believe that the ohomology of thisomplex of polydi�erential operators was originally omputed by J. Vey [36℄. Allthese omputations orrespond to the ase when E = TM . In our general ase wehave the following proposition:
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V : (ET ∗

poly, 0) −→ (ED∗
poly, ∂)

v0 ∧ · · · ∧ vk 7−→
1

(k + 1)!

∑

σ∈Sk+1

ǫ(σ)vσ0
⊗ · · · ⊗ vσk

(2.1)and
C : (ECpoly

∗ , b) −→ (EA∗, 0)

a 7−→ (v 7→ a ◦ V(v))(2.2)are quasi-isomorphisms of (sheaves of) omplexes.Remark. Reall that EA∗ is the sheaf (1.7) of E-forms with reversed grading.Proof. It is proved in [1℄ (Theorem 1.2) that V is a quasi-isomorphism of ohainomplexes. By (OM -)duality we obtain a quasi-isomorphism (ECpoly
∗ , ♭)→ (EA∗, 0),where ♭a := a ◦ ∂. Let us show that ♭ = b: let a ∈ ECpoly

k and P ∈ EDk−1
poly, then

(ba)(P ) = ρ(a)((1 ⊗ P ) •m0 + (−1)k−1(1⊗ P ⊗ 1))

= ρ(a)(1 ⊗ 1⊗ P − 1⊗ (P •m0) + (−1)k−1(1⊗ P ⊗ 1))

= a(1⊗ P − P •m0 + (−1)k−1P ⊗ 1) = a(∂P ) .The proposition is proved. �2.2. The formality of the DGLA module of E-hains. Unfortunately, themaps (2.1) and (2.2) respet neither the Lie brakets nor the ations. This defetan be ured using the notion of Lie algebras and their modules up to homotopy(see [18℄ for a detailed disussion of the general theory and its appliations, and[10, setion 2℄ for a quik review of the notions and results we need). The mainresult of this paper is the following theorem:Theorem 2.2. For any C∞ Lie algebroid (E, M, ρ) one an onstrut a ommu-tative diagram of sheaves of DGLAs and DGLA modules over M(2.3) ET ∗
poly ≻→ L1 ≻→ L2 ←≺ ED∗

poly

↓mod ↓mod ↓mod ↓mod

EA∗ ≻≻→ M1 ←≺≺ M2 ←≺≺ ECpoly
∗ ,in whih the horizontal arrows in the upper row are L∞-quasi-isomorphisms ofsheaves of DGLAs and the horizontal arrows in the lower row are L∞-quasi-isomorphismsof L∞-modules. The terms (L1, L2, M1, M2) and the quasi-isomorphisms of thediagram (2.3) are funtorial for isomorphisms of pairs (E, ∂E), where E is a C∞Lie algebroid and ∂E is a torsion free E-onnetion on E.The proof of this theorem oupies the next two setions.We would like to mention that the funtoriality of the hain of quasi-isomor-phisms (2.3) between the pair of sheaves of DGLA modules implies the followinginteresting resultsCorollary 2.3. Let (E, M, ρ) be a C∞ Lie algebroid equipped with a smooth ationof a group G. If one an onstrut a G-invariant onnetion ∂E on E then there



FORMALITY THEOREMS FOR LIE ALGEBROID CHAINS 13exists a hain of G-equivariant quasi-isomorphisms between the sheaves of DGLAmodules (ET ∗
poly, EA∗) and (ED∗

poly, ECpoly
∗ ) . 2In partiular,Corollary 2.4. If (E, M, ρ) is a C∞ Lie algebroid equipped with a smooth ation ofa �nite or ompat group G then the DGLA modules (Γ(M, ET ∗

poly)G, Γ(M, EA∗)
G)and (Γ(M, ED∗

poly)G, Γ(M, ECpoly
∗ )G) are quasi-isomorphi. 2Example. Let us onsider the ase when the base manifold M shrinks to a point.Then the Lie algebroid E is a �nite dimensional real Lie algebra g and the diagramof sheaves (2.3) beomes a diagram of (DG) Lie algebras and their modules. TheseDG Lie algebras and their modules an be desribed in geometri terms using areal Lie group G whose Lie algebra is g . Indeed, ED∗

poly an be identi�ed with theDGLA of the left invariant polydi�erential operators on G , ECpoly
∗ is the ED∗

poly-module of left invariant polyjets on G. Similarly, the sheaves ET ∗
poly and EA∗ anbe identi�ed with the graded Lie algebra of left invariant polyvetor �elds on Gand the graded module of left invariant exterior forms on G , respetively. In thisase, our result an be derived from orollary 4 in [11℄ (see setion 5.3 in [11℄).Remark. It will appear learly in the proof that all these results remain true foromplex Lie algebroids. Namely, a omplex Lie algebroid on a smooth real manifold

M is a omplex vetor bundle of �nite rank E whose sheaf of setions is a sheafof (omplex) Lie algebras with a OC

M -linear morphism of sheaves of Lie algebras
ρ : E → TCM satisfying the same ondition desribed in formula (1.1).2.3. Formality theorems for the Hohshild omplexes of R[[y1, . . . , yd]].In order to prove theorem 2.2 we onstrut the Fedosov resolutions of the sheavesof DGLAs ET ∗

poly and ED∗
poly and of the sheaves of DGLA modules EA∗ and

ECpoly
∗ . These resolutions allow us to redue the problem to the ase of the tangentLie algebroid TR

d → R
d. For the latter ase the desired result follows from theombination of Kontsevih's [20℄ and Shoikhet's [29℄ formality theorems.First, we reall the required version of Kontsevih's formality theorem. Let

M = R
d
formal be the formal ompletion of R

d at the origin. In other words weset OM = R[[y1, . . . , yd]] and E = Der(OM ). Let us denote by T ∗
poly(Rd

formal)and D∗
poly(Rd

formal) the DGLA of polyvetor �elds and polydi�erential operatorson R
d
formal, respetively, thenTheorem 2.5 (Kontsevih, [20℄). There exists an L∞-quasi-isomorphism K from

T ∗
poly(R

d
formal) to D∗

poly(Rd
formal) suh that(1) The �rst struture map K[1] is Vey's quasi-isomorphism (2.1) of omplexes

V.(2) K is GLd(R)-equivariant.(3) If n > 1 then for any vetor �elds v1, . . . , vn ∈ T 0
poly(Rd

formal)

K[n](v1, . . . , vn) = 0



14 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUT(4) If n > 1 then for any vetor �eld v ∈ T 0
poly(R

d
formal) linear in the oordi-nates yi and any polyvetor �elds χ2, . . . , χn ∈ T ∗

poly(R
d
formal)

K[n](v, χ2, . . . , χn) = 0.We denote by
A∗(Rd

formal) = R[[y1, . . . , yd]]⊗
∧

(Rd)the omplex of exterior forms on R
d
formal with the vanishing di�erential and by

Jpoly
∗ (Rd

formal) = R[[y1, . . . , yd]]⊗̂ (∗+1)the omplex of Hohshild hains of R[[y1, . . . , yd]] , where the notation ⊗̂ standsfor the tensor produt ompleted in the adi topology on R[[y1, . . . , yd]].Using the Lie derivative (1.6) of exterior forms by a polyvetor �eld, we anregard A∗(Rd
formal) as a graded module over the graded Lie algebra T ∗

poly(Rd
formal).Furthermore, the ation of Hohshild ohains on Hohshild hains (see formula

(3.4) in [10℄) allows us to regard Jpoly
∗ (Rd

formal) as a DG modules over the DGLA
D∗

poly(Rd
formal). Finally, using Kontsevih's quasi-isomorphism K we get an L∞-module struture on Jpoly

∗ (Rd
formal) over T ∗

poly(Rd
formal). For this L∞-module, wehave the following theorem:Theorem 2.6 (Shoikhet, [29℄). There exists a quasi-isomorphism S of L∞-modulesover T ∗

poly(Rd
formal) from Jpoly

∗ (Rd
formal) to A∗(Rd

formal) suh that(1) The �rst struture map S [1] is the quasi-isomorphism of Connes (2.2) .(2) The struture maps of S are GLd(R)-equivariant.(3) If n > 1 then for any vetor �eld v ∈ T 0
poly(Rd

formal) linear in the oor-dinates, any polyvetor �elds χ2, . . . , χn ∈ T ∗
poly(Rd

formal) and any hain
j ∈ Jpoly

∗ (Rd
formal)

S [n](v, χ2, . . . , χn; j) = 0Remark 1. The third assertion of the above theorem is proved in [10℄ (see theo-rem 3).Remark 2. Hopefully, one an prove the assertions of theorem 2.6 along the linesof Tamarkin and Tsygan [31, 32, 33℄.3. The Fedosov resolutionsLet, as above, E →M be a C∞ Lie algebroid with braket [, ] on setions and theanhor ρ. Following [10℄ we introdue the formally ompleted symmetri algebrabundle Ŝ(E∨) of the dual bundle E∨ and bundles T , D, A, J naturally assoiatedto Ŝ(E∨). They all are pro- and/or ind-�nite dimensional vetor bundles.
• Ŝ(E∨) is the formally ompleted symmetri algebra bundle of the bundle

E∨ . Loal setions are given by formal power series
∞
∑

l=0

si1...il
(x)yi1 · · · yilwhere yi are oordinates on the �bers of E and si1...il

are omponents of asymmetri ovariant E-tensor.
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• T ∗ := Ŝ(E∨)⊗ ∧∗+1E is the graded bundle of formal �berwise polyvetor�elds on E. Loal homogeneous setions of degree k are of the form(3.1) ∞

∑

l=0

vj0...jk

i1...il
(x)yi1 · · · yil

∂

∂yj0
∧ · · · ∧

∂

∂yjk
,where vj0...jk

i1...il
are omponents of an E-tensor with symmetri ovariant part(indies i1, . . . , il) and antisymmetri ontravariant part (indies j0, . . . , jk).

• D∗ := Ŝ(E∨) ⊗ T ∗+1(SE) is the graded bundle of formal �berwise polyd-i�erential operators on E with the shifted grading. A loal homogeneoussetion of degree k looks as follow(3.2) ∞
∑

l=0

Pα0...αk

i1...il
(x)yi1 · · · yil

∂|α0|

∂yα0
⊗ · · · ⊗

∂|αk|

∂yαk
,where αs are multi-indies, Pα0...αk

i1...il
are omponents of an E-tensor withthe obvious symmetry of the orresponding indies, and

∂|αs|

∂yαs
=

∂

∂yj1
. . .

∂

∂yj|αs|for αs = (j1 . . . j|αs|) .
• A∗ := Ŝ(E∨)⊗∧−∗(E∨) is the graded bundle of formal �berwise di�erentialforms on E with the reversed grading. Any loal homogeneous setion ofdegree −k an be written as(3.3) ∞

∑

l=0

ωi1...il,j1...jk
(x)yi1 · · · yildyj1 ∧ · · · ∧ dyjk ,where ωi1...il,j1...jk

are omponents of a ovariant E-tensor symmetri inindies i1, . . . , il and antisymmetri in indies j1, . . . , jk.
• J∗ is the bundle of Hohshild hains of Ŝ(E∨) over OM .(3.4) J =

⊕

k≥0

Jk, Jk := (ŜE∨)⊗̂OM
(k+1) ,where ⊗̂ stands for the tensor produt ompleted in the adi topology.Loal setions of homogeneous degree k are formal power series(3.5) ∑

α0,...,αk

aα0,...,αk
(x)yα0

0 yα1

1 · · · y
αk

kin k+1 opies y0, . . . , yk of oordinates on the �bers of E. Here αs are multi-indies, aα0,...,αk
are omponents of a tensor with an obvious symmetry inthe orresponding indies, and

yαm
m = yj1

m . . . y
j|αm|
mfor αm = (j1 . . . j|αm|) .For our purposes, we onsider E-di�erential forms with values in the sheaves

Ŝ(E∨), T , D, A, J . Below we list these sheaves of E-forms together with thealgebrai strutures they arry.33For any bundle B we will denote EΩ(B) the bundle EΩ ⊗ B of E-forms with values in B, and
EΩ(U,B) the spae of setions over an open subset U ⊂ M (instead of Γ(U, EΩ ⊗B)).
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• EΩ(Ŝ(E∨)) is a bundle of graded ommutative algebras with grading givenby the exterior degree of E-forms. EΩ(Ŝ(E∨)) is also �ltered by the degreeof monomials in �ber oordinates yi.
• EΩ(T ) is a sheaf of graded Lie algebras and EΩ(A) is a sheaf of graded mod-ules over EΩ(T ). These strutures are indued by those of T ∗

poly(Rd
formal)and A∗(Rd

formal), respetively and the grading is given by the sum of theexterior degree and the degree of a polyvetor (resp. a form). [, ]SN willdenote the Lie braket between setions of the sheaf EΩ(T ) and Lu (theLie derivative) will denote the ation of a �berwise polyvetor u ∈ EΩ(T )on the setions of EΩ(A). EΩ(T ) is also a sheaf of graded ommutativealgebras. The multipliation of setions in EΩ(T ) is given by the exteriorprodut in the spae T ∗
poly(Rd

formal) of polyvetor �elds on R
d
formal . TheLie braket and the produt in EΩ(T ) turn EΩ(T ) into a sheaf of Gersten-haber algebras4.

• EΩ(D) is a sheaf of DGLAs and EΩ(J ) is a sheaf of DGLA modulesover EΩ(D). These strutures are indued by those of D∗
poly(Rd

formal) and
J∗

poly(Rd
formal), respetively and the grading is given by the sum of theexterior degree and the degree of a (o)hain. We denote by ∂ and [, ]Grespetively the di�erential and the Lie braket on EΩ(D), b will stand forthe di�erential on EΩ(J ) and RP will denote the ation of P ∈ EΩ(D) onthe setions of EΩ(J ). EΩ(D) is also a sheaf of DGAs. The multipliationof setions is indued by the up produt in the spae D∗

poly(Rd
formal) ofpolydi�erential operators on R

d
formal .Remark. Notie that A is a sheaf of exterior forms with values in Ŝ(E∨). However,we would like to distinguish A from EΩ(Ŝ(E∨)). For this purpose we use two opiesof a loal basis of exterior forms. Those are {dyi} and {ξi} for A and EΩ(Ŝ(E∨)),respetively.The following proposition shows that we have a distinguished sheaf of graded Liealgebras whih ats on the sheaves EΩ(Ŝ(E∨)), EΩ(A), EΩ(T ), EΩ(D), and EΩ(J ).Proposition 3.1. The sheaf EΩ(T 0) of E-forms with values in �berwise vetor�elds is a sheaf of graded Lie algebras. The sheaves EΩ(Ŝ(E∨)), EΩ(A), EΩ(T ),

EΩ(D), and EΩ(J ) are sheaves of modules over EΩ(T 0) and the ation of setionsin EΩ(T 0) is ompatible with the DG algebrai strutures on EΩ(Ŝ(E∨)), EΩ(A),
EΩ(T ), EΩ(D), and EΩ(J ) .Proof. Sine the Shouten-Nijenhuis braket (1.3), (1.4) has degree zero EΩ(T 0) ⊂
EΩ(T ) ⊂ EΩ(D) is a subsheaf of graded Lie algebras. While the ation of EΩ(T 0)on the setions of EΩ(Ŝ(E∨)) is obvious, the ation on EΩ(A) is given by the Liederivative, the ation on EΩ(T ) is the adjoint ation orresponding to the Shouten-Nijenhuis braket, the ation on EΩ(D) is given by the Gerstenhaber braket andthe ation on EΩ(J ) is indued by the ation of Hohshild ohains on Hohshildhains (see formula 3.4 in paper [10℄). The ompatibility of the ation with theorresponding DGLA and DGLA module strutures follows from the onstrution.The ompatibility of the ation with the produt in EΩ(T ) follows from the axioms4The de�nition of the Gerstenhaber algebra an be found in setion 4.1 of the seond part of[7℄ or in the original paper [16℄.



FORMALITY THEOREMS FOR LIE ALGEBROID CHAINS 17of the Gerstenhaber algebra [16℄ and the ompatibility with the produt in EΩ(D)an be veri�ed by a straightforward omputation. �Due to the above proposition the following 2-nilpotent derivation(3.6) δ := ξi ∂

∂yi
: EΩ∗(Ŝ(E∨))→ EΩ∗+1(Ŝ(E∨))of the sheaf of algebras EΩ(Ŝ(E∨)) obviously extends to 2-nilpotent di�erentialson EΩ(T ), EΩ(D), EΩ(A) and EΩ(J ). Furthermore, it follows from proposition 3.1that δ is ompatible with the DG algebrai strutures on EΩ(T ), EΩ(A), EΩ(D),and EΩ(J ).Note that(3.7) ker δ ∩ Ŝ(E∨) ∼= OM , ker δ ∩A∗

∼= EA∗as sheaves of (graded) ommutative algebras over OM . Similarly, ker δ ∩ T , (resp.
ker δ ∩ D) is a sheaf of �berwise polyvetor �elds (3.1) (resp. �berwise polydi�er-ential operators (3.2)) whose omponents do not depend on the �ber oordinates
yi. In other words,(3.8) ker δ ∩ T ∗ ∼= ∧∗+1(E)as sheaves of graded ommutative algebras and(3.9) ker δ ∩ D∗ ∼= ⊗∗+1(S(E)) ,as sheaves of DGAs over OM .In fat, one an prove a more stronger statement:Proposition 3.2. For B being either of the sheaves Ŝ(E∨), A, T or D

H≥1(EΩ(B), δ) = 0 .Furthermore,(3.10) H0(EΩ(Ŝ(E∨)), δ) ∼= OM ,

H0(EΩ(A∗), δ) ∼=
EA∗ ,

H0(EΩ(T ∗), δ) ∼= ∧∗+1(E)as sheaves of (graded) ommutative algebras and(3.11) H0(EΩ(D∗), δ) ∼= ⊗∗+1(S(E))as sheaves of DGAs over OM .Proof. Due to equations (3.7), (3.8), and (3.9) the proposition will follow immedi-ately if we onstrut an operator(3.12) κ : EΩ∗(B)→ EΩ∗−1(B)suh that for any setion u of EΩ(B)(3.13) u = δκ(u) + κδ(u) +H(u) ,where(3.14) H(u) = u
∣

∣

∣

yi=ξi=0
.



18 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUTFirst, we de�ne this operator on the sheaf EΩ(Ŝ(E∨))(3.15) κ(a) = yk
~∂

∂ξk

1
∫

0

a(x, ty, tξ)
dt

t
, a ∈ EΩ>0(U, Ŝ(E∨)) , κ

∣

∣

∣

Ŝ(E∨)
= 0 ,where the arrow over ∂ denotes the left derivative with respet to the anti-om-muting variable ξi.Next, we extend κ to setions of the sheaves EΩ(A), EΩ(T ), EΩ(D) in theomponentwise manner. A diret omputation shows that equation (3.13) holdsand the proposition follows. �Sine our Lie algebroid E is a smooth bundle over M , it admits a global torsionfree onnetion ∂E5. Using this onnetion we de�ne the following derivation of theDG sheaves EΩ(Ŝ(E∨)), EΩ(A), EΩ(T ), EΩ(D), and EΩ(J ):(3.16) ∇ = Ed + Γ· : EΩ∗(B)→ EΩ∗+1(B) , Γ = −ξiΓk

ijy
j ∂

∂yk
,where B is either of the sheaves Ŝ(E∨), A, T , D, or J , Γk

ij(x) are Christo�el'ssymbols of the onnetion ∂E and Γ· denotes the ation of Γ on the setions ofthe sheaves EΩ(B) (see proposition 3.1). It is not hard to see that ∇ (3.16) isompatible with the DG algebrai strutures on EΩ(Ŝ(E∨)), EΩ(T ), EΩ(A), EΩ(D),and EΩ(J ). Furthermore, the torsion freeness of the onnetion ∂E implies that(3.17) ∇δ + δ∇ = 0 .The standard urvature E-tensor (Rij)
l
k(x) of the onnetion ∂E provides uswith the following �berwise vetor �eld:(3.18) R = −

1

2
ξiξj(Rij)

l
k(x)yk ∂

∂yl
∈ EΩ2(M, T 0) .A diret omputation shows that for B being any of the sheaves ES, A, T , D, or

J , we have(3.19) ∇2 = R· : EΩ∗(B)→ EΩ∗+2(B) ,where R· denotes the ation of the vetor �eld R in the sense of proposition 3.1.Although ∇ is not �at the following theorem shows that the ombination ∇− δan be extended to a �at onnetion on the sheaves EΩ(Ŝ(E∨)), EΩ(T ), EΩ(A),
EΩ(D), and EΩ(J ).Theorem 3.3. Let B be either of the sheaves ES, A, T , D, or J . There exists aglobal setion(3.20) A =

∞
∑

s=2

ξkAj
k,i1...is

(x)yi1 · · · yis
∂

∂yjof the sheaf EΩ1(T 0) suh that the derivation(3.21) D := ∇− δ + A· : EΩ∗(B)→ EΩ∗+1(B)is 2-nilpotent
D2 = 0 ,and (3.21) is ompatible with the DG algebrai struture on EΩ(B) .5Reall that by the word �onnetion� we always mean an E-onnetion (1.14).



FORMALITY THEOREMS FOR LIE ALGEBROID CHAINS 19Proof. The proof goes essentially along the lines of [9, theorem 2℄.Thanks to equation (3.19) the ondition D2 = 0 is equivalent to the equation(3.22) R +∇A− δA +
1

2
[A, A]SN = 0 .We laim that a solution of (3.22) an be obtained by iterations of the followingequation(3.23) A = κR + κ(∇A +

1

2
[A, A]SN )in degrees in the �ber oordinates yi . Indeed, equation (3.13) implies that iterating(3.23) we get a solution of the equation

κ(R +∇A− δA +
1

2
[A, A]SN ) = 0 .We denote by C the left hand side of (3.22)

C = R +∇A− δA +
1

2
[A, A]SN ,and mention that due to Bianhi's identities ∇R = δR = 0(3.24) ∇C − δC + [A, C] = 0 .Applying κ (3.15) to (3.24) and using the homotopy property (3.13) we get

C = κ(∇C + [A, C]) .The latter equation has the unique vanishing solution sine the operator κ (3.15)raises the degree in the �ber oordinates yi .Proposition 3.1 implies that the di�erential (3.21) is ompatible with the DGalgebrai strutures on EΩ(B) . Thus, the theorem is proved. �In what follows we refer to the di�erential D (3.21) as the Fedosov di�erential.The following theorem desribes the ohomology of the Fedosov di�erential Dfor the sheaves EΩ(Ŝ(E∨)), EΩ(A), EΩ(T ), and EΩ(D)Theorem 3.4. For B being either of the sheaves EΩ(Ŝ(E∨)), EΩ(A), EΩ(T ), or
EΩ(D)(3.25) H≥1(B, D) = 0 .Furthermore,(3.26) H0(EΩ(Ŝ(E∨)), D) ∼= OM ,

H0(EΩ(A∗), D) ∼= EA∗ ,

H0(EΩ(T ∗), D) ∼= ker δ ∩ T ∗ ,as sheaves of graded ommutative algebras(3.27) H0(EΩ(D∗), D) ∼= ker δ ∩ D∗as sheaves of DGAs over R.



20 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUTProof. The �rst statement follows easily from the spetral sequene argument. In-deed, using the �ber oordinates yi we introdue the dereasing �ltration
· · · ⊂ F p+1

B ⊂ F p
B ⊂ F p−1

B ⊂ · · · ⊂ F 0
B = B ,where the omponents of the setions of the sheaf F p

B have degree in yi ≥ p.Sine D(F p
B) ⊂ F p−1

B the orresponding spetral sequene starts with
Ep,q

−1 = F p
B

p+q .It is easy to see that
d−1 = δ .Thus using proposition 3.2 we onlude that for any p, q satisfying the ondition

p + q > 0

Ep,q
0 = Ep,q

1 = · · · = Ep,q
∞ = 0and the �rst statement (3.25) follows.Let B denote either of the bundles Ŝ(E∨), A, T , or D. We laim that iteratingthe equation(3.28) λ(u) = u + κ(∇λ(u) + A · λ(u)) , u ∈ Γ(U,B ∩ ker δ)we get a map of sheaves of graded vetor spaes(3.29) λ : B ∩ ker δ → B ∩ kerD .Here A· denotes the ation of the �berwise vetor �eld A, de�ned in proposition3.1. Indeed, let u be a setion of B. Then, due to formula (3.13) λ(u) satis�es thefollowing equation(3.30) κ(D(λ(u))) = 0 .Let us denote Dλ(u) by Y

Y = Dλ(u) .The equation D2 = 0 implies that
DY = 0whih is equivalent to(3.31) δY = ∇Y + A · YApplying (3.13) to Y and using equations (3.30), (3.31) we get

Y = κ(∇Y + A · Y ) .The latter equation has the unique vanishing solution sine the operator κ (3.15)raises the degree in the �ber oordinates yi.The map (3.29) is obviously injetive. To prove that the map is surjetive wenotie that H
H : B → B ∩ ker δis a left inverse of the map (3.29). Thus it su�es to prove that if a ∈ Γ(U,B∩kerD)and(3.32) Ha = 0then a vanishes.The ondition a ∈ kerD is equivalent to the equation
δa = ∇a + A · a .



FORMALITY THEOREMS FOR LIE ALGEBROID CHAINS 21Hene, applying (3.13) to a and using (3.32) we get
a = κ(∇a + A · a) .The latter equation has the unique vanishing solution sine the operator κ (3.15)raises the degree in the �ber oordinates yi. Thus, the map (3.29) is bijetive andthe map H(3.33) H : B ∩ kerD → B ∩ ker δis the inverse of (3.29).It remains to prove that the map (3.29) is ompatible with the multipliation ofthe setions of the sheaf B, where B is either Ŝ(E∨), A, T , or D . The latter followsimmediately from the fat that the inverse map H(3.34) H : B → B ∩ ker δrespets the orresponding algebra strutures on Ŝ(E∨), A, T , and the DGA stru-ture on D . �Let us now mention that sine the Fedosov di�erential (3.21) is ompatible withthe graded algebrai strutures on the sheaves EΩ(T ) and EΩ(A) we onlude that

H∗(EΩ(T ), D) is a sheaf of graded Lie algebras and H∗(EΩ(A), D) is a sheaf ofgraded modules over H∗(EΩ(T ), D) . On the other hand the above theorem tellsus that
H∗(EΩ(A), D) = EA∗ ,and

H∗(EΩ(T ), D) = T ∗ ∩ ker δ,Furthermore, the sheaf T ∗ ∩ ker δ in the right hand side of the latter equation anbe anonially identi�ed with ET ∗
poly = ∧∗+1E as a sheaf of vetor spaes.Thus, it is natural to ask whether the graded algebrai strutures on the sheaves

T ∗ ∩ ker δ and EA∗ oinide with the ones given by Lie braket (1.3) (1.4) and theLie derivative (1.6). A positive answer to this question is given by the followingproposition:Proposition 3.5. The omposition(3.35) H′ = ν ◦ H : T ∗ ∩ kerD → ET ∗
polyof the map(3.36) H : T ∗ ∩ kerD → T ∗ ∩ ker δwith the identi�ation of the sheaves T ∗ ∩ ker δ and ET ∗
poly
∼= ∧∗+1E(3.37) ν : T ∗ ∩ ker δ

∼
→ ET ∗

polyindues an isomorphism of the sheaves of graded Lie algebras H∗(EΩ(T ), D) ∼= ET ∗
poly.The map(3.38) H : A∗ ∩ kerD → EA∗indues an isomorphism of the sheaves of graded modules H∗(EΩ(A), D) ∼= EA∗over the sheaf of graded Lie algebras H∗(EΩ(T ), D) ∼= ET ∗

poly .



22 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUTProof. The �rst part of the proposition is proved in [1℄ (see proposition 2.4). Toprove the seond part, we �rst remark that the maps H and ν are ompatible withthe up produts.Next, we show that for any D-losed �berwise di�erential form ω ∈ Γ(U,A) onehas
H(dfω) = EdH(ω) ,where df = dyi ∂

∂yi is the �berwise De Rham di�erential on A . Sine
H : A∗ →

EA∗is a morphism of graded ommutative algebras, it is su�ient to prove it for fun-tions and 1-forms:
• First ase. Let f be a funtion and

ω = λ(f) .A diret omputation shows that
λ(f) = f + yiρ(ei)f mod |y|2 .Therefore dfω = ρ(ei)fdyi mod |y|, and hene, H(dfω) = Edf .

• Seond ase. Let α = αi(x)dyi be a E-1-form and
ω = λ(α) .It is not hard to show that

λ(α) = α + yi
(

ρ(ei)αj − Γk
ijαk

)

dyj mod |y|2 .Therefore,
dfω =

(

ρ(ei)αj−Γk
ijαk

)

dyi∧dyj mod |y| = (

ρ(ei)αj−
1

2
ck
ijαk

)

dyi∧dyj mod |y| ,and hene,
H(dfω) = Edα .To �nish the proof we notie that for any �berwise polyvetor �eld u ∈ Γ(U, T ∗)and any �berwise di�erential form ω ∈ Γ(U,A), the equation

H(ιuω) = ιH(u) ◦ H(ω)is obviously satis�ed. The latter implies that for any pair of D-losed setions
u ∈ Γ(U, T ∗), ω ∈ Γ(U,A∗)

H(Luω) = ELH(u) ◦ H(ω) ,and the proposition follows. �Remark. Atually, we have proved a slightly stronger statement. Namely, weshown that the maps (3.38) and (3.35) indue an isomorphism of the sheaves ofaluli.
(H∗(EΩ(T ), D), H∗(EΩ(A), D)) ∼= (ET ∗

poly, EA∗) .The preise de�nition of the aluli an be found in setion 4.3 of the seond partof [7℄.



FORMALITY THEOREMS FOR LIE ALGEBROID CHAINS 23Let us now reall that T 0 is a sheaf of Lie-Rinehart algebras [28℄ over the sheafof algebras T −1 = Ŝ(E∨), and D0 is the universal enveloping algebra6 of T 0.Therefore, the inverse (H′)−1 of the map (3.35) indues the morphism(3.39) µ : UE → D0of the sheaves of Hopf algebroids with anhor, and for any P ∈ Γ(U,UE)(3.40) D(µ(P )) = 0 .We laim thatProposition 3.6. The map (3.39) gives the isomorphism(3.41) µ : UE → D0 ∩ kerD .of the sheaves of Hopf algebroids with anhor.Proof. Notie that UE and D0 are both �ltered sheaves of algebras. The �ltra-tion on UE is de�ned in (1.12) and the �ltration on D0 is given by the degree ofdi�erential operators.Thanks to the results of [27℄ and [28℄ we have the PBW theorem for Lie alge-broids. This theorem says that the assoiated graded module of the �ltration (1.12)on UE is
Gr(UE) = S(E)the symmetri algebra of the bundle E .Furthermore, it is not hard to see that the map µ is ompatible with the �l-trations on UE and D0 and due to theorem 3.4 and proposition 3.2 µ indues theisomorphism

S(E) ∼= D0 ∩ kerDof the assoiated graded sheaves of vetor spaes. Therefore, the snake lemmaargument implies that the map (3.41) is also an isomorphism onto the sheaf D0 ∩
kerD of D-�at setions of D0. �Let us reall that ED∗

poly (resp. D∗) is the tensor algebras of UE over OM (resp.the tensor algebra of D0 over Ŝ(E∨)). Using this fat we extend (3.39) to themorphism(3.42) µ′ : ED∗
poly → D

∗ .of sheaves of DGAs (over R) by setting
µ′

∣

∣

∣

ED0
poly

= µ , µ′
∣

∣

∣

OM

= λ ,where λ is de�ned in (3.29) .Let us also observe that sine the map (3.39) is a morphism of the sheavesof Hopf algebroids with anhor then the map (3.42) a morphism of the sheavesof DGLAs (over R). Furthermore, theorem 3.4 implies that the sheaf of DGAs
D∗ ∩ kerD is generated by the sheaf D0 ∩ kerD over the sheaf of ommutativealgebras Ŝ(E∨)∩ker D ∼= OM . Therefore using proposition 3.6 we get the followingresult:6More preisely, D0 is the sheaf assoiated to the orresponding presheaf of universal envelopingalgebras, like UE (1.11) for the sheaf of Lie-Rinehart algebras E over OM .



24 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUTProposition 3.7 (proposition 2.5, [1℄). The map (3.42) gives an isomorphism ofthe sheaves of DGLAs(3.43) µ′ : ED∗
poly

∼
→ D∗ ∩ kerD .This map is also ompatible with the DGA strutures on the sheaves ED∗

poly and
D∗ ∩ kerD by onstrution. 2Let us onsider the map of sheaves of graded vetor spaes(3.44) γ : J∗ →

EJpoly
∗ , γ(j)(P ) = (µ′(P ))(j)

∣

∣

∣

yi=0
,

j ∈ Γ(U,Jk) , P ∈ Γ(U, EDk
poly) .We laim thatTheorem 3.8. For any q ≥ 1(3.45) Hq(EΩ(J ), D) = 0 ,and the map (3.44) gives an isomorphism of the sheaves of DG modules over thesheaf of DGLAs ED∗

poly
∼= D∗ ∩ kerD(3.46) γ : J∗

∼
→ EJpoly

∗ .This isomorphism sends the Fedosov onnetion (3.21) on J ∗ to the Grothendiekonnetion (1.26) on EJpoly
∗ .Proof. The �rst statement (3.45) follows easily from the spetral sequene argu-ment. Indeed, using the zeroth olletion of the �ber oordinates yi

0 (3.5) we intro-due the dereasing �ltration on the sheaf EΩ(J )

· · · ⊂ F p+1(EΩ(J )) ⊂ F p(EΩ(J )) ⊂ F p−1(EΩ(J )) ⊂ · · · ⊂ F 0(EΩ(J )) = EΩ(J ) ,where the omponents of the setions (3.5) of the sheaf F p(EΩ(J )) have degree in
yi
0 ≥ p.Sine D(F p(EΩ(J ))) ⊂ F p−1(EΩ(J )) the orresponding spetral sequene startswith

Ep,q
−1 = F p(EΩ(J )p+q) .Next, we observe that

d−1 = ξi ∂

∂yi
0

,and hene, due to the Poinaré lemma for the formal disk we have
Ep,q

0 = Ep,q
1 = · · · = Ep,q

∞ = 0whenever p + q > 0. Thus, the �rst statement (3.45) of the theorem follows.Sine (3.39) is a morphism of sheaves of Hopf algebroids with anhor
µ′(P •Q) = µ′(P ) •µ′(Q) , P, Q ∈ Γ(U, ED∗

poly) .Furthermore, µ′ is obviously ompatible with yli permutations
t µ′(P0 ⊗ P1 ⊗ · · · ⊗ Pl) = µ′(P1 ⊗ P2 ⊗ · · · ⊗ Pl ⊗ P0) , Pi ∈ Γ(U,UE) .Hene, for any P ∈ Γ(U, ED∗

poly) and any a ∈ Γ(U,J∗)(3.47) ESP (γ(a)) = γ(Rµ′(P )(a)) .Sine J∗ is dual to D∗ ∩ ker δ and D∗ ∩ ker δ ∼= D∗ ∩ kerD ∼= ED∗
poly the map(3.46) is an isomorphism. It remains to prove that the map (3.46) sends the Fedosov



FORMALITY THEOREMS FOR LIE ALGEBROID CHAINS 25onnetion (3.21) to the Grothendiek onnetion (1.26). This statement is provedby the following line of equations:
γ(Duj)(P ) = (µ′(P ))(Duj)

∣

∣

∣

yi=0
= (Du[µ′(P )(j)])

∣

∣

∣

yi=0

= ρ(u)[µ′(P )(j)]
∣

∣

∣

yi=0
− (ιuδ • [µ′(P )(j)])

∣

∣

∣

yi=0

= ρ(u)[µ′(P )(j)]
∣

∣

∣

yi=0
− (µ′(u) •µ′(P ))(j)

∣

∣

∣

yi=0

= ρ(u)[µ′(P )(j)]
∣

∣

∣

yi=0
− µ′(u •P )(j)

∣

∣

∣

yi=0

= ρ(u)(γ(j))(P ) − (γ(j))(u •P ) = (∇G
u γ(j))(P ) ,where u ∈ Γ(U, E), j ∈ Γ(U,Jk), P ∈ Γ(U,EDk

poly) , ι denotes the ontration of an
E-vetor �eld with E-di�erential forms, ρ is the anhor map, and u is viewed bothas a setion of E and an E-di�erential operator. �4. Proof of the formality theorem for E-hains and its appliations4.1. Proof of the theorem. Let us denote

• λA : EA∗ →
EΩ(A∗) the map λ (3.29) de�ned in the proof of theorem 3.4for B = EΩ(A∗),

• λT : ET ∗
poly →

EΩ(T ), the inverse of the map H′ (3.35),
• λD : ED∗

poly →
EΩ(D), the map µ′ (3.42) and

• λC : ECpoly
∗ → EΩ(J ), the omposition γ−1 ◦ ̺ of the inverse of the map γ(3.44) with the map ̺ (1.37).The results of the previous setion an be represented in the form of the followingommutative diagrams of sheaves of DGLAs, their modules, and morphisms

(4.1)
(ET ∗

poly, 0, [, ]SN )
λT

≻→ (EΩ(T ), D, [, ]SN )

↓
EL
mod ↓Lmod

(EA∗, 0)
λA

≻≻→ (EΩ(A), D),

(EΩ(D), D + ∂, [, ]G)
λD

←≺ (ED∗
poly, ∂, [, ]G)

↓Rmod ↓
ER
mod

(EΩ(J ), D + b)
λC

←≺≺ (ECpoly
∗ , b),where the horizontal arrows orrespond to embeddings of the sheaves of DGLAs(resp. of DGLA modules) onstruted in the previous setion. These embeddingsare quasi-isomorphisms by theorems 3.4, 3.8 and propositions 3.5, 3.7 .Next, due to laims 1 and 2 in theorem 2.5 we have a �berwise L∞-quasi-iso-morphism(4.2) K : (EΩ(T ), 0, [, ]SN ) ≻→ (EΩ(D), ∂, [, ]G)



26 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUTfrom the sheaf of DGLAs (EΩ(T ), 0, [, ]SN) to the sheaf of DGLAs (EΩ(D), ∂, [, ]G) .Composing L∞-quasi-isomorphism (4.2) with the ation of EΩ(D) on EΩ(J ) we getan L∞-module struture on EΩ(J ) over EΩ(T ).Due to laims 1 and 2 in theorem 2.6 we have a �berwise L∞-quasi-isomorphism(4.3) S : (EΩ(J ), b) ≻≻→ (EΩ(A), 0)from the sheaf of L∞-modules EΩ(J ) to the sheaf of DGLA modules EΩ(A) over
EΩ(T ) .Thus we get the following ommutative diagram(4.4) (EΩ(T ), 0, [, ]SN )

K
≻→ (EΩ(D), ∂, [, ]G)

↓Lmod ↓Rmod

(EΩ(A), 0)
S
←≺≺ (EΩ(J ), b),where by ommutativity we mean that S is a L∞-morphism of the sheaves of

L∞-modules (EΩ(J ), b) and (EΩ, 0) over the sheaf of DGLAs (EΩ(T ), 0, [, ]SN)and the L∞-module struture on (EΩ(J ), b) over (EΩ(T ), 0, [, ]SN) is obtained byomposing the L∞-morphism K with the ationR (see 3.4 in [10℄) of (EΩ(D), ∂, [, ]G)on (EΩ(J ), b) .Let us now restrit ourselves to an open subset V ⊂M suh that E
∣

∣

∣

V
is trivial.Over any suh subset the E-de Rham di�erential (1.5) is well de�ned for either ofthe sheaves EΩ(A), EΩ(T ), EΩ(J ), and EΩ(D) . Furthermore, sine the L∞-quasi-isomorphisms (4.2) and (4.3) are �berwise we an add to all the di�erentials indiagram (4.4) the E-de Rham di�erential (1.5). Thus we get a new ommutativediagram(4.5) (EΩ(T )

∣

∣

∣

V
, Ed, [, ]SN )

K
≻→ (EΩ(D)

∣

∣

∣

V
, Ed + ∂, [, ]G)

↓Lmod ↓Rmod

(EΩ(A)
∣

∣

∣

V
, Ed)

S
←≺≺ (EΩ(J )

∣

∣

∣

V
, Ed + b)of the L∞-morphism K and the morphism of L∞-modules S.We laim thatProposition 4.1. The L∞-morphism K and the morphism of L∞-modules S in(4.5) are quasi-isomorphisms.Proof. This statement follows easily from the standard argument of the spetralsequene. Indeed, we an naturally regard EΩ(T ) and EΩ(D) (resp. EΩ(J ) and

EΩ(A)) as sheaves of double omplexes and the exterior degree provides us withthe following desending �ltration
F p(EΩ∗(B)) =

⊕

k≥p

EΩk(B) ,where B is either T or D (resp. J or A).The orresponding versions of Vey's [36℄ and Hohshild-Kostant-Rosenberg-Connes-Teleman [4℄, [19℄, [34℄ theorems for R
d
formal imply that K (resp. S) in-dues a quasi-isomorphism on the level of E0. Hene, K (resp. S) indues a



FORMALITY THEOREMS FOR LIE ALGEBROID CHAINS 27quasi-isomorphism on the level of E∞. The standard snake lemma argument ofhomologial algebra implies that K (resp. S) in (4.5) is a quasi-isomorphism. �On the open subset V we an represent the Fedosov di�erential (3.21) in thefollowing (non-ovariant) form(4.6) D = Ed + B · ,

B =

∞
∑

p=0

ξiBk
i;j1...jp

(x)yj1 . . . yjp
∂

∂yk
.If we regard B as a setion in EΩ1(V, T 0) then the nilpoteny ondition D2 = 0 saysthat B is a Maurer-Cartan setion of the sheaf of DGLAs (EΩ(T )

∣

∣

∣

V
,Ed, [, ]SN ) . Inthe terminology of setion 2 in [10℄ this means that the sheaf of DGLAs (EΩ(T )

∣

∣

∣

V
,

D, [, ]SN) is obtained from (EΩ(T )
∣

∣

∣

V
, Ed, [, ]SN ) via the twisting proedure by theMaurer-Cartan element B .Aording to proposition 1 in setion 2 of [10℄ the element

BD =
∞
∑

k=1

1

k!
Kk(B, . . . , B)is a Maurer-Cartan setion of (EΩ(D)

∣

∣

∣

V
, Ed + ∂, [, ]G) . Moreover, due to laim 3 intheorem 2.5

BD = B ,where B is viewed as a setion of the sheaf EΩ1(D0)
∣

∣

∣

V
.Thus twisting the L∞-quasi-isomorphism K in (4.5) by the Maurer-Cartan ele-ment B we get the L∞-quasi-isomorphism

Ktw : (EΩ(T )
∣

∣

∣

V
, D, [, ]SN ) ≻→ (EΩ(D)

∣

∣

∣

V
, D + ∂, [, ]G) .Sine the DGLA module struture on EΩ(A) over EΩ(T ) (resp. on EΩ(J ) over

EΩ(D)) is honest the twist by the Maurer-Cartan element desribed in setion 2 of[10℄ do not hange these strutures. Hene, by virtue of propositions 3 and 4 in [10℄the twisting proedure turns diagram (4.5) into the ommutative diagram(4.7) (EΩ(T )
∣

∣

∣

V
, D, [, ]SN )

Ktw

≻→ (EΩ(D)
∣

∣

∣

V
, D + ∂, [, ]G)

↓Lmod ↓Rmod

(EΩ(A)
∣

∣

∣

V
, D)

Stw

←≺≺ (EΩ(J )
∣

∣

∣

V
, D + b),where Stw is a L∞-quasi-isomorphism obtained from S by twisting via the Maurer-Cartan setion B of the sheaf of DGLAs (EΩ(T )

∣

∣

∣

V
, Ed, [, ]SN ) .We laim that the L∞-morphism Ktw (resp. Stw) does not depend on the hoieof the trivialization of E over V and hene is a well-de�ned L∞-morphism of sheavesof DGLAs (resp. sheaves of DGLA modules). Indeed, the term in B that dependson the hoie of the trivialization of E is linear in the �ber oordinates yi . But dueto laim 4 in theorem 2.5 and laim 3 in theorem 2.6 this term ontribute neitherto Ktw nor to Stw .



28 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUTThus the L∞-quasi-isomorphisms Ktw and Stw are well de�ned and we arrive atthe following ommutative diagram(4.8) (EΩ(T ), D, [, ]SN )
Ktw

≻→ (EΩ(D), D + ∂, [, ]G)

↓Lmod ↓Rmod

(EΩ(A), D)
Stw

←≺≺ (EΩ(J ), D + b).Assembling diagrams (4.1) and (4.8) we get the desired hain (2.3) of quasi-isomorphisms between the sheaves of DGLA modules (ET ∗
poly, EA∗) and (ED∗

poly,
ECpoly

∗ ) . It is obvious from the onstrution that the terms and the quasi-isomor-phisms of the resulting diagram (2.3) are funtorial in the pair (E, ∂E), where ∂Eis a torsion-free onnetion on E. Thus, theorem 2.2 is proved. 24.2. Appliations of the formality theorem. The obvious appliations of theformality theorem for E-hains are related to the deformations assoiated withPoisson Lie algebroids. Namely, theorem 2.2 allows us to get an elegant desriptionof the Hohshild homology and the traes of these deformations.First, we reall thatDe�nition 4.2. A Lie algebroid (E, M, ρ) equipped with an E-bivetor π ∈ Γ(M,ET 1
poly)satisfying the Jaobi identity(4.9) [π, π]SN = 0is alled a Poisson Lie algebroid.Following [26℄ a quantization of a Poisson Lie algebroid is a onstrution of anelement(4.10) Π ∈ Γ(M, ED1

poly)[[~]]satisfying the ondition of the lassial limit(4.11) Π = 1⊗ 1 mod ~ , Π− t(Π) = ~π mod ~ ,and the �assoiativity� ondition(4.12) [Π, Π]G = 0 .Here ~ is an auxiliary variable and t denotes the (yli) permutation of omponentsof Π ∈ Γ(M, ED1
poly)[[~]] = Γ(M,UE ⊗ UE)[[~]] .Furthermore, two deformations Π and Π′ of (E, M, ρ, π) are alled equivalent ifthere exists a formal power series

Ψ = 1 + ~Ψ1 + ~
2Ψ2 + . . . ∈ Γ(M,UE)[[~]]suh that(4.13) (∆Ψ)Π′ = Π(Ψ ⊗Ψ) ,where ∆ is the oprodut (1.13) in UE.Thanks to the formality theorem for the sheaf of DGLAs ED∗

poly proved in [1℄we have a bijetive orrespondene between the moduli spaes of Maurer-Cartanelements of the DGLA ~Γ(M, ET ∗
poly)[[~]] of E-polyvetor �elds and the DGLA
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~Γ(M, ED∗

poly)[[~]] of E-polydi�erential operators. In other words, if we onsiderthe one(4.14) π~ = ~π + ~
2π1 + +~

3π2 + . . . ,

[π~, π~]SN = 0 ,

πi ∈ Γ(M, ET 1
poly)of formal power series in ~ ated upon by the Lie algebra ~Γ(M, E)[[~]](4.15) π~ → [u, π~] , u ∈ ~Γ(M, E)[[~]] ,thenCorollary 4.3. The deformations (4.10) assoiated with a Poisson Lie algebroid

(E, M, ρ, π) modulo the relation (4.13) are in a bijetive orrespondene with thepoints of the one (4.14) modulo the ation (4.15) of the prounipotent group orre-sponding to the Lie algebra ~Γ(M, E)[[~]] . 2An orbit [π~] on the one (4.14) orresponding to a deformation Π (4.10) is alledthe lass of the deformation and any point π~ of this orbit is alled a representativeof the lass.Given a deformation Π (4.10) assoiated with a Poisson Lie algebroid (E, M, ρ, π)one an de�ne Hohshild hain omplex of this deformation as the graded vetorspae(4.16) Γ(M, ECpoly
∗ )[[~]]equipped with the di�erential

ERΠ : ECpoly
∗ → ECpoly

∗+1 .Furthermore, one de�nes the Hohshild ohain omplex of the deformation Π asthe graded vetor spae(4.17) Γ(M, ED∗
poly)[[~]]equipped with the di�erential

[Π, ] : ED∗
poly →

ED∗+1
poly .Due to laim 5 of proposition 2 in [10℄, laim 5 of proposition 3 in [10℄, andtheorem 2.2 we get the following result:Corollary 4.4. Let Π be a deformation assoiated with a Poisson Lie algebroid

(E, M, ρ, π) and let π~ be a representative of the lass of this deformation. Then theomplex of Hohshild ohomology (4.17) of the deformation Π is quasi-isomorphito the omplex of E-polyvetor �elds(4.18) (Γ(M, ET ∗
poly)[[~]], [π~, ])with the di�erential [π~, ] . The omplex of Hohshild homology (4.16) of the de-formation Π is quasi-isomorphi to the omplex of E-forms(4.19) (EΩ(M)[[~]], ELπ~

)with the di�erential ELπ~
. 2



30 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUTGiven a deformation Π (4.10) assoiated with a Poisson Lie algebroid (E, M, ρ, π)one an de�ne a trae7 of the deformation Π as an R[[~]]-linear funtional(4.20) tr : O(M)[[~]]→ R[[~]]satisfying the following ondition(4.21) tr(j(Π) − j(t(Π))) = 0 , ∀ j ∈ Γ(M, EJpoly
1 ) ∩ ker∇G .It is not hard to see that orollary 4.4 implies the following statement:Corollary 4.5. Let Π be a deformation assoiated with a Poisson Lie algebroid

(E, M, ρ, π) and let π~ be a representative of the lass of this deformation. Thenthe vetor spae of traes of the deformation Π is isomorphi to the vetor spaeof ontinuous R[[~]]-linear R[[~]]-valued funtionals on O(M)[[~]] vanishing on allfuntions f ∈ O(M)[[~]] of the following form
f = j(π~) , j ∈ Γ(M, EJpoly

1 ) ∩ ker∇G ,where π~ is viewed as a series E-bidi�erential operators. 25. Formality theorems for holomorphi Lie algebroidsLet now M be a omplex manifold. Let us write TCM = T 1,0 ⊕ T 0,1 for thedeomposition of the (omplexi�ed) tangent bundle as the sum of the holomorphitangent bundle and anti-holomorphi tangent bundle. We denote by OM the stru-ture sheaf of holomorphi funtions on M and by zα loal oordinates on M . Wehave to adapt the de�nition of holomorphi Lie algebroids:De�nition 5.1. A holomorphi Lie algebroid over a omplex manifold M is aholomorphi vetor bundle E of �nite rank whose sheaf of setions is a sheaf of Liealgebras equipped with a OM -linear map of sheaves of (omplex) Lie algebras
ρ : E → T 1,0 ,satisfying the same ondition desribed (for the smooth ase) in formula (1.1).Remark. This notion is di�erent from the one of a omplex Lie algebroid that weintrodued in the remark of subsetion 2.2.5.1. Algebrai strutures and the main theorem. Let E be a holomorphiLie algebroid. As in setion 1, one an de�ne the following sheaves (whih are alsoholomorphi vetor bundles):

• ET ∗
poly is the sheaf of E-polyvetor �elds. We regard ET ∗

poly as a sheafof DGLAs with the vanishing di�erential and with the Lie braket [, ]SNde�ned as in (1.3), (1.4).
• EA∗ is the sheaf of E-di�erential forms with onverted grading:(5.1) EA∗ = ∧−∗E∨ , EA0 = OM .We regard EA∗ as a sheaf of DGLA modules over ET ∗

poly with the vanishingdi�erential and with the ation EL de�ned as in (1.6).7This notion is very important for formulations of various versions of algebrai index theoremsfor deformations assoiated with Poisson Lie algebroids [26℄.
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• ED∗

poly is a sheaf of E-polydi�erential operators. We regard ED∗
poly as asheaf of DGLAs with the braket [, ]G and the di�erential ∂ de�ned as in(1.24) and (1.25). Notie that the tensor produt of setions (over OM ) of

ED∗
poly turns ED∗

poly into a sheaf of DGAs.
• EJpoly

∗ is the sheaf of E-polyjets
EJpoly =

⊕

k≥0

EJpoly
k , EJpoly

∗ := HomOM
(ED∗

poly,OM ) ,whih we regard as a sheaf of DGLA modules over ED∗
poly with the ation

ES and the di�erential b de�ned as in (1.31) and (1.35) . The sheaf EJpoly
∗is also equipped with the Grothendiek onnetion(5.2) ∇G : T 1,0 ⊗ EJpoly

∗ 7→ EJpoly
∗ , ∇G

u (j)(P ) := ρ(u)(j(P ))− j(u•P ) ,where u ∈ Γ(U, T 1,0) is a holomorphi vetor �eld, P ∈ Γ(U, EDk
poly),

j ∈ Γ(U, EJpoly
k ) and the operation • is de�ned in (1.23) . The onnetion(5.2) is ompatible the DGLA module struture on EJpoly

∗ .
• ECpoly

∗ is the graded sheaf of ∇G-�at E-polyjets with onverted grading(5.3) ECpoly
∗ := ker∇G ∩ EJpoly

−∗ .Due to the ompatibility of the Grothendiek onnetion (5.2) with theDGLA module struture on E-polyjets ECpoly
∗ an be viewed as a sheaf ofDG modules over sheaf of DGLAs ED∗

poly . We refer to ECpoly
∗ as a sheaf ofHohshild E-hains or E-hains for short.The main result of this setion an be formulated as follows:Theorem 5.2. For any holomorphi Lie algebroid E over a omplex manifold

M the sheaves of DGLA modules (ET ∗
poly,

EA∗) and (ED∗
poly, ECpoly

∗ ) are quasi-isomorphi.Omitting the sheaves of DGLA modules EA∗ and ECpoly
∗ in the above theoremwe get the following orollary:Corollary 5.3. For any holomorphi Lie algebroid E over a omplex manifold Mthe sheaves of DGLAs ET ∗

poly and ED∗
poly are quasi-isomorphi.We would like to mention that this orollary is parallel to the result of A. Yekutieli[39℄, who proved this statement for the tangent Lie algebroid TM → M of anysmooth algebrai variety over a �eld K for whih R ⊂ K .Notie that applying theorem 5.2 to the tangent algebroid T 1,0M →M we provethe following version of Tsygan's formality onjeture for omplex manifolds:Theorem 5.4. For any omplex manifold M the sheaf of DGLA modules Cpoly(M)of Hohshild hains over the sheaf Dpoly(M) of (holomorphi) polydi�erential op-erators is formal. 2The proof of theorem 5.2 oupies the rest of the setion.5.2. Fedosov resolutions. First, we observe that any holomorphi Lie algebroid

E an be viewed as a omplex Lie algebroid in the sense of the remark in subsetion2.2, where the anhor map is naturally extended to the smooth setions of E. It islear that the sheaf of Lie algebras T 0,1 ats on E and that this ation ommuteswith ρ as ρ is holomorphi. Thus we get



32 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUTProposition 5.5. Let F be the smooth vetor bundle F = E ⊕ T 0,1. Then F is aomplex Lie algebroid over M with the anhor map ρF : F → T 1,0 ⊕ T 0,1 given by
ρF

∣

∣

∣

E
= ρ and ρF

∣

∣

∣

T 0,1
= id : T 0,1 → T 0,1. 2For a holomorphi vetor bundle B over M we onsider the sheaf of smooth

F -di�erential forms with values in B:(5.4) FΩ(B) =
⊕

p,q

FΩp,q(B) ,

FΩp,q(B) = ∧pE∨ ⊗ ∧qT ∗0,1M ⊗ BFor setions(5.5) a =
∑

p,q

ai1...ip ; α1,...,αq
(z, z̄)ξi1 . . . ξipdz̄α1 . . . dz̄αq ,

ai1...ip ; α1,...,αq
(z, z̄) ∈ Γ smooth(U,B)of FΩ(B) we reserve the loal basis {ξi} of anti-ommuting �ber oordinates on Eand the loal basis {dz̄α} of antiholomorphi exterior forms on M . We denote by

d̄ the Dolbeault di�erential(5.6) d̄ = dz̄α∂z̄α : FΩp,∗(B) 7→ FΩp,∗+1(B) .It is obvious that the (DG) algebrai strutures on the sheaves ET ∗
poly, EA∗,

ED∗
poly, andEJpoly

∗ , an be naturally extended to the sheavesFΩ0,∗(ET ∗
poly),FΩ0,∗(EA∗),

FΩ0,∗(ED∗
poly), and FΩ0,∗(EJpoly

∗ ) . Similarly, the Grothendiek onnetion (5.2) on
EJpoly

∗ extends to the operator(5.7) ∇G : T 1,0 ⊗ FΩ0,∗(EJpoly
∗ ) 7→ FΩ0,∗(EJpoly

∗ ) ,whih is ompatible with the ation ES of FΩ0,∗(ED∗
poly) on FΩ0,∗(EJpoly

∗ ) and withthe di�erential b on FΩ0,∗(EJpoly
∗ ) .Sine ET ∗

poly, EA∗, ED∗
poly, and EJpoly

∗ are holomorphi vetor bundles it makessense to speak about the Dolbeault di�erential (5.6)(5.8) d̄ : FΩ0,∗(B) 7→ FΩ0,∗+1(B) ,for B being either ET ∗
poly, EA∗, ED∗

poly, or EJpoly
∗ . It is obvious that d̄ is om-patible with the (DG) algebrai strutures on FΩ0,∗(B) and with the Grothendiekonnetion (5.7) on FΩ0,∗(EJpoly

∗ ) .Furthermore, due to the d̄-Poinaré lemma we haveProposition 5.6. If B is either ET ∗
poly, EA∗, ED∗

poly, or EJpoly
∗ then the anonialinlusion of sheaves(5.9) inc : B →֒ FΩ0,∗(B)is a quasi-isomorphism of omplexes of sheaves (B, 0) and (FΩ0,∗(B), d̄) . The in-lusion inc is ompatible with the (DG) algebrai strutures on B, and FΩ0,∗(B),and with the Grothendiek onnetion (5.2), (5.7). 2Due to this proposition it su�es to prove that the sheaves of DGLA modules

(FΩ0,∗(ET ∗
poly),

FΩ0,∗(EA∗)), and (FΩ0,∗(ED∗
poly), FΩ0,∗(EJpoly

∗ )) are quasi-isomorphi.To show this we follow the lines of setion 2 and introdue the formally ompletedsymmetri algebra Ŝ(E∨) of the dual bundle E∨ and (holomorphi) bundles T , D,
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A, J assoiated with Ŝ(E∨) (see page 15). As in setion 2, T and D are sheaves ofDGLAs while A and J are sheaves of DGLA modules over T and D, respetively.
D is also a sheaf of DGA's.Next, we onsider sheaves of smooth F -di�erential forms with values in thebundles Ŝ(E∨) T , D, A, and J . It is lear that the sheaves FΩ(Ŝ(E∨)), FΩ(A),
FΩ(T ), FΩ(D), and FΩ(J ) aquire the orresponding (DG) algebrai strutures andthe Dolbeault di�erential (5.6) is obviously ompatible with these strutures.Furthermore, we have the following obvious analogue of proposition 3.1Proposition 5.7. The sheaf FΩ(T 0) of F -forms with values in �berwise vetor�elds is a sheaf of graded Lie algebras. The sheaves FΩ(Ŝ(E∨)), FΩ(A), FΩ(T ),
FΩ(D), and FΩ(J ) are sheaves of modules over FΩ(T 0) and the ation of FΩ(T 0) isompatible with the DG algebrai strutures on FΩ(Ŝ(E∨)), FΩ(A), FΩ(T ), FΩ(D),
FΩ(J ) and with the Dolbeault di�erential (5.6). 2Due to this proposition one an extend the following di�erential

δ := ξi ∂

∂yi
: FΩ∗,q(Ŝ(E∨))→ FΩ∗+1,q(Ŝ(E∨))of the sheaf of algebras FΩ(Ŝ(E∨)) to the sheaves FΩ(T ),FΩ(D), FΩ(A) and FΩ(J )so that δ is ompatible with the (DG) algebrai strutures on FΩ(T ), FΩ(A),

FΩ(D), and FΩ(J ), and with the di�erential d̄ (5.6). Here {yi} (resp. {ξi}) denoteommuting (resp. antiommuting) �ber oordinates of the bundle E .We now have an analogue of proposition 3.2Proposition 5.8. For B being either of the sheaves Ŝ(E∨), A, T or D and q ≥ 0,
H≥1(FΩ∗,q(B), δ) = 0 .Furthermore,(5.10) H0(FΩ∗,q(Ŝ(E∨)), δ) ∼= FΩ0,q(M,OM ) ,

H0(FΩ∗,q(A∗), δ) ∼=
FΩ0,q(M, EA∗) ,

H0(FΩ∗,q(T ∗), δ) ∼= FΩ0,q(M,∧∗+1(E))as sheaves of (graded) ommutative algebras and(5.11) H0(FΩ∗,q(D∗), δ) ∼= FΩ0,q(M,⊗∗+1(S(E)))as sheaves of DGAs over OM .Proof. As in proposition 3.2 is su�es to onstrut an operator (q ≥ 0)(5.12) κ : FΩ∗,q(B)→ FΩ∗−1,q(B)suh that for any setion u of FΩ(B) equation(5.13) u = δκ(u) + κδ(u) +H(u) ,is still true, where now(5.14) H(u) = u
∣

∣

∣

yi=ξi=0
.and yi are as above �ber oordinates on E . As in the proof of proposition 3.2 wede�ne κ on FΩ(Ŝ(E∨)) by equation (3.12) and then extend it to FΩ(T ), FΩ(A),and FΩ(D) in the omponentwise manner. �



34 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUTLet us hoose a onnetion ∂E on E whih is ompatible with the omplexstruture on E(5.15) ∂E = Ed + d̄ + ξiΓi : FΩ∗(E)→ FΩ∗+1(E) ,where ξiΓi is loally a setion of the sheaf EΩ1(End(E)) and Ed : FΩ∗,q
M → FΩ∗+1,q

Mis de�ned in (1.5) .It is not hard to show that suh a onnetion always exists, and moreover, onean always hoose ∂E to be torsion free.As in (3.16) we extend (5.15) to a derivation of the DG sheaves FΩ(Ŝ(E∨)),
FΩ(A), FΩ(T ), FΩ(D), and FΩ(J ):(5.16) ∇ = Ed + Γ ·+d̄ : FΩ∗(B)→ FΩ∗+1(B) ,where B is either of the sheaves Ŝ(E∨), A, T , D, or J , Γ = −ξiΓk

ijy
j ∂

∂yk , Γk
ij(x)are Christo�el's symbols of the onnetion ∂E (5.15) and Γ· denotes the ation of Γon the setions of the sheaves FΩ(B) . Due to proposition 5.7 ∇ (5.16) is ompatiblewith the DG algebrai strutures on FΩ(Ŝ(E∨)), FΩ(T ), FΩ(A), FΩ(D), and FΩ(J ),and sine ∇ is torsion free(5.17) ∇δ + δ∇ = 0 .Regarding (5.16) as a onnetion on B one an see that the urvature of (5.16)has the omponents of type (2, 0) and (1, 1)(5.18) ∇2 = R2,0 + R1,1 , R2,0 = (Ed + Γ)2, R1,1 = d̄Γ .We now prove the existene of a omplex Fedosov di�erential D:Theorem 5.9. Let B be either of the sheaves Ŝ(E∨), A, T , D, or J . There existsa setion(5.19) A =

∞
∑

s=2

ξkAj
k,i1...is

(z, z̄)yi1 · · · yis
∂

∂yjof the sheaf FΩ1,0(T 0) and a setion(5.20) Ā =

∞
∑

s=2

dz̄αĀj
α,i1...is

(z, z̄)yi1 · · · yis
∂

∂yjof the sheaf FΩ0,1(T 0) suh that the derivation(5.21) D := ∇− δ + A ·+Ā· : FΩ∗(B)→ FΩ∗+1(B)is 2-nilpotent (D2 = 0) and ompatible with the DG algebrai struture on FΩ(B) .Proof. Let us rewrite D = D1,0 + D0,1 with
D1,0 = Ed + Γ · −δ + A· , D0,1 = d̄ + Ā·and try to mimi the proof of theorem 3.3.Due to (5.17) and (5.18) the ondition (D1,0)2 = 0 is equivalent to the equation
R2,0 + (Ed + Γ · )A− δA +

1

2
[A, A]SN = 0 .This equation has a solution obtained by iterations of the following equation (withrespet to the degrees in �ber oordinates yi's)

A = κR2,0 + κ((Ed + Γ · )A +
1

2
[A, A]SN )



FORMALITY THEOREMS FOR LIE ALGEBROID CHAINS 35(the proof is the same as for theorem 3.3).Using (5.18) one again we observe that the ondition D1,0D0,1 + D0,1D1,0 = 0is equivalent to
R1,1 + d̄A + (Ed + Γ · )Ā− δĀ + [A, Ā]SN = 0 ,whih, using the same arguments, has a solution obtained by iterations of theequation
Ā = κ(R1,1 + d̄A + (Ed + Γ · )Ā + [A, Ā]SN ).Indeed, denoting

C1,1 = R1,1 + d̄A + (Ed + Γ · )Ā− δĀ + [A, Ā]SN ,and using that δA = R2,0 + Ed + Γ · A + 1
2 [A, A]SN ((D1,0)2 = 0), d̄R2,0 = 0 and

δR1,1 = 0 (Bianhi's identities for ∇) we get
(Ed + Γ · )C1,1 − δC1,1 + [A, C1,1] = 0.We have κC1,1 = 0 by onstrution of Ā and so, by the �Hodge-de Rham� deom-position (5.13), we have
C1,1 = κ((Ed + Γ · )C1,1 + [A, C1,1]).The latter equation has the unique vanishing solution, whih gives the result.Let us now hek the ondition (D0,1)2 = 0. This will be true if the setion

C0,2 = d̄Ā +
1

2
[Ā, Ā] ∈ FΩ0,2(T 0)is zero. One has again D1,0C0,2 = 0 and κC0,2 = 0 beause it does not have ξ's.As before, one an onlude that C0,2 = 0.The ompatibility of (5.21) with the orresponding DG algebrai strutures fol-lows from proposition 5.7. �We now desribe the ohomology of the Fedosov di�erential D for the sheaves

FΩ(Ŝ(E∨)), FΩ(A), FΩ(T ), and FΩ(D)Theorem 5.10. Let B be either of the sheaves Ŝ(E∨), A, T , or D and q ≥ 0. Wehave
H(FΩ∗(B), D) ∼= H(FΩ0,∗(M,B) ∩ ker δ, d̄) .as sheaves of (di�erential) graded (ommutative) algebras.Proof. Let us onsider the double omplex (FΩ∗,∗(B), D1,0+D0,1). Using the degreein the �ber oordinates yi we introdue on this omplex a dereasing �ltration.Applying the spetral sequene argument (as in the proof of theorem 3.4) andusing proposition 5.8 we onlude that for any i ≥ 0, the ohomology of the omplex

(FΩ∗,i(B), D1,0) is onentrated in degree ∗ = 0 . Therefore,(5.22) H(FΩ∗(B), D) = H(FΩ0,∗(B) ∩ kerD1,0, D0,1) .Following the lines of the proof of theorem 3.4 it is not hard to show that iteratingthe equation(5.23) λ(u) = u + κ(∇λ(u) + A · λ(u) + Ā · λ(u)) , u ∈ FΩ0,q(U,B) ∩ ker δwe get an isomorphism of sheaves (of graded vetor spaes)(5.24) λ : FΩ0,q(B) ∩ ker δ → FΩ0,q(B) ∩ kerD1,0 ,and moreover, the map λ (5.24) has a natural inverse given by the map H (5.14).



36 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUTWe laim that λ gives a quasi-isomorphism of omplexes
λ : (FΩ0,∗(B) ∩ ker δ, d̄)→ (FΩ∗(B), D).Indeed, due to (5.22) it su�es to show that for any u ∈ FΩ0,q(U,B) ∩ ker δ, onehas

λ(d̄(u)) = D0,1λ(u).The term λ(d̄(u)) is the only element in FΩ0,q(B) suh that H(λ(d̄(u))) = d̄(u) and
D1,0λ(d̄(u)) = 0. It is lear that H(D0,1λ(u)) = d̄(u) and one has

D1,0D0,1λ(u) = −D0,1D1,0λ(u) = 0,sine map λ (5.23) lands in kerD1,0 .The map λ (5.24) is ompatible with the orresponding multipliations in Ŝ(E∨),
A, T , or D sine so is the map H (5.14) . The theorem is proved. �It is not hard to prove the following analogue of proposition 3.5 :Proposition 5.11. The omposition(5.25) H′ = ν ◦ H : FΩ0,∗(T ) ∩ kerD1,0 → FΩ0,∗(ET ∗

poly)of the map(5.26) H : FΩ0,∗(T ) ∩ kerD1,0 → FΩ0,∗(T ) ∩ ker δwith the identi�ation of the sheaves T ∗ ∩ ker δ and ET ∗
poly
∼= ∧∗+1E(5.27) ν : T ∗ ∩ ker δ

∼
→ ET ∗

polyis an isomorphism of the sheaves of DGLAs(5.28) (FΩ0,∗(T ) ∩ kerD1,0, D0,1, [, ]SN ) ∼= (FΩ0,∗(ET ∗
poly), d̄, [, ]SN )The map(5.29) H : FΩ0,∗(A∗) ∩ kerD1,0 → FΩ0,∗(EA∗)is an isomorphism of the sheaves of DGLA modules

(FΩ0,∗(A∗) ∩ kerD1,0, D0,1) ∼= (FΩ0,∗(EA∗), d̄)over the sheaf of DGLAs (5.28) . 2Thanks to equation (5.22) this proposition implies that the mapH′ gives a quasi-isomorphism of the sheaves of DGLAs (FΩ∗(T ), D, [, ]SN ) and (FΩ0,∗(ET ∗
poly), d̄, [, ]SN ) .Playing with the PBW theorem for the Lie algebroids (as we did in the proofof proposition 3.6) and with the up produt in the sheaves D and ED∗

poly (seeequation (3.42)) one an prove the following analogue of proposition 3.7Proposition 5.12. The exists an isomorphism of the sheaves of DGLAs(5.30) µ′ : (FΩ0,∗(ED∗
poly), d̄, [, ]G)

∼
→ (FΩ0,∗(D) ∩ kerD1,0, D0,1, [, ]G) ,whih is ompatible with the DGA strutures on the sheaves FΩ0,∗(ED∗

poly) and
FΩ0,∗(D). 2



FORMALITY THEOREMS FOR LIE ALGEBROID CHAINS 37Thanks to equation (5.22) this proposition implies that the map µ′ (5.30) gives aquasi-isomorphism of the sheaves of DGLAs (FΩ∗(D), D, [, ]G) and (FΩ0,∗(ED∗
poly), d̄, [, ]G) .Let us onsider the map(5.31) γ : FΩ0,q(J∗)→

FΩ0,q(EJpoly
∗ ) , γ(j)(P ) = (µ′(P ))(j)

∣

∣

∣

yi=0
,where j ∈ FΩ0,q(U,Jk) and P is a holomorphi setion of EDk

poly .For this map we have the following obvious analogue of theorem 3.8Theorem 5.13. For any q ≥ 0(5.32) Hq(FΩ∗(J ), D) = Hq(FΩ0,∗(J ) ∩ kerD1,0, D0,1) .and the map γ (5.31) provides us with an isomorphism of the sheaves of DGLAmodules(5.33) γ : FΩ0,∗(J∗)
∼
→ FΩ0,∗(EJpoly

∗ )over the sheaf of DGLAs
(FΩ0,∗(D) ∩ kerD1,0, D0,1, [, ]G) ∼= (FΩ0,∗(ED∗

poly), d̄, [, ]G) .The map γ sends the omponent D1,0 to the Grothendiek onnetion (5.7) and theomponent D0,1 to the Dolbeault di�erential d̄ (5.6). 25.3. End of the proof of theorem 5.2. We have onstruted the following honest(L∞-)quasi-isomorphisms of the sheaves of DGLA modules
• λT : (FΩ0,∗(M, ET ∗

poly), d̄, [, ]SN)→ (FΩ(T ), D, [, ]SN ),
• λA : (FΩ0,∗(M, EA∗), d̄)→ (FΩ(A∗), D),
• λD : (FΩ0,∗(M, ED∗

poly), d̄, [, ]G)→ (FΩ(D), D, [, ]G), and
• λC : (FΩ0,∗(M, ECpoly

∗ ), d̄)→ (FΩ(J ), D).Namely, the map λT is the inverse of H′ (5.25) the map λA is the inverse of H(5.29) λD = µ′ (5.30), and λC is omposition of the identi�ation (5.3) and theinverse of γ (5.31).Our results an be summarized in the following ommutative diagrams
(5.34)

(FΩ0,q(M, ET ∗
poly), d̄, [, ]SN )

λT

≻→ (FΩ(T ), D, [, ]SN )

↓
EL
mod ↓Lmod

(FΩ0,q(M, EA∗), d̄)
λA

≻≻→ (FΩ(A), D),

(FΩ(D), D + ∂, [, ]G)
λD

←≺ (FΩ0,q(M, ED∗
poly), d̄ + ∂, [, ]G)

↓Rmod ↓
ER
mod

(FΩ(J ), D + b)
λC

←≺≺ (FΩ0,q(M, ECpoly
∗ ), d̄ + b),



38 DAMIEN CALAQUE, VASILIY DOLGUSHEV AND GILLES HALBOUTwhere the ation ER is obtained from the ation ES of FΩ0,∗(M, ED∗
poly) on

FΩ0,q(M, EJpoly
∗ ) via the identi�ation (5.3).Due to laims 1 and 2 in theorem 2.5 and laims 1 and 2 in theorem 2.6 we getthe following ommutative diagram(5.35) (FΩ(T ), 0, [, ]SN )

K
≻→ (FΩ(D), ∂, [, ]G)

↓Lmod ↓Rmod

(FΩ(A), 0)
S
←≺≺ (FΩ(J ), b),where by ommutativity we mean that S is a morphism of the sheaves of L∞-modules (FΩ(J ), b) and (FΩ, 0) over the sheaf of DGLAs (FΩ(T ), 0, [, ]SN ) and the

L∞-module struture on (FΩ(J ), b) over (FΩ(T ), 0, [, ]SN) is obtained by omposingthe L∞-isomorphism K with the ation R (see 3.4 in [10℄) of (FΩ(D), ∂, [, ]G) on
(FΩ(J ), b) .Let us now restrit ourselves to an open subset V ⊂M suh that E

∣

∣

∣

V
is trivial.Over any suh subset the E-de Rham di�erential (1.5) is well de�ned for either ofthe sheaves FΩ(A), FΩ(T ), FΩ(J ), and FΩ(D) . So again, we get a new ommutativediagram(5.36) (FΩ(T )

∣

∣

∣

V
, Ed + d̄, [, ]SN )

K
≻→ (FΩ(D)

∣

∣

∣

V
, Ed + d̄ + ∂, [, ]G)

↓Lmod ↓Rmod

(FΩ(A)
∣

∣

∣

V
, Ed + d̄)

S
←≺≺ (FΩ(J )

∣

∣

∣

V
, Ed + d̄ + b)in whih the L∞-morphism K and the morphism of L∞-modules S are quasi-isomorphisms.On the open subset V we an represent the Fedosov di�erential (3.21) in thefollowing (non-ovariant) form(5.37) D = Ed + d̄ + B · +B̄ · ,

B =

∞
∑

p=0

ξiBk
i;j1...jp

(z, z̄)yj1 . . . yjp
∂

∂yk
,and

B̄ =

∞
∑

p=0

dz̄αB̄k
α;j1...jp

(z, z̄)yj1 . . . yjp
∂

∂yk
,where the zα are loal oordinates on M . If we regard B + B̄ as a setion of

FΩ1(T 0)
∣

∣

∣

V
then the nilpoteny ondition D2 = 0 says that B + B̄ is a Maurer-Cartan setion of the sheaf of DGLAs (FΩ(T )

∣

∣

∣

V
, Ed + d̄, [, ]SN ) .



FORMALITY THEOREMS FOR LIE ALGEBROID CHAINS 39Thus applying the twisting proedures developed in setion 2 of [10℄ and usinglaim 3 of theorem 2.5 we get the following ommutative diagram(5.38) (EΩ(T )
∣

∣

∣

V
, D, [, ]SN )

Ktw

≻→ (EΩ(D)
∣

∣

∣

V
, D + ∂, [, ]G)

↓Lmod ↓Rmod

(EΩ(A)
∣

∣

∣

V
, D)

Stw

←≺≺ (EΩ(J )
∣

∣

∣

V
, D + b),in whih Ktw is a L∞-quasi-isomorphism of the sheaves of DGLAs and Stw is a

L∞-quasi-isomorphism of the sheaves of DGLA modules.Due to laim 4 in theorem 2.5 and laim 3 in theorem 2.6 the quasi-isomorphismsdo not depend on the trivialization of E over V .Thus we onstruted the following ommutative diagram of sheaves of DGLAs,DGLA modules and their L∞-quasi-isomorphisms:(5.39) (EΩ(T ), D, [, ]SN )
Ktw

≻→ (EΩ(D), D + ∂, [, ]G)

↓Lmod ↓Rmod

(EΩ(A), D)
Stw

←≺≺ (EΩ(J ), D + b),Combining the diagrams in (5.34), (5.39) together with the proposition 5.6 wesee that the sheaves of DGLA modules (ET ∗
poly, EA∗) and (ED∗

poly, ECpoly
∗ ) areonneted by hain of quasi-isomorphisms. Thus, theorem 5.2 is proved. 26. Conluding remarksIt would be interesting to prove the orresponding version of the algebrai indextheorem [26℄, [32℄, whih should relate a yli hain in the omplex assoiated witha deformation Π (4.10) to its prinipal part and harateristi lasses of the Lie alge-broid (E, M, ρ). It would be also interesting to investigate how other harateristilasses [6℄, [15℄, [22℄ of Lie algebroids ould enter this piture.Corollary 5.3 does not in general give a hain of quasi-isomorphisms betweenthe DGLAs Γ(M, ET ∗

poly) and Γ(M, ED∗
poly) of global setions. However, sinethe sheaves of smooth forms FΩ0,∗(ET ∗

poly) and FΩ0,∗(ED∗
poly) are soft one ouldspeulate about the deformations assoiated with E as about the Maurer-Cartanelements of the DGLA FΩ0,∗(M, ED∗

poly)[[~]] . Using the orrespondene betweenthe Dolbeault and �eh pitures one ould relate these speulations to Kontsevih'salgebroid piture of deformation quantization of algebrai varieties [21℄ .Finally, we think that the tehnique of mixed resolutions proposed by A. Yekutieli[39℄ ould help us to prove Tsygan's formality onjeture for Hohshild hainsof the struture sheaf of a smooth algebrai varieties over an arbitrary �eld ofharateristi 0 . Referenes[1℄ D. Calaque, Formality for Lie algebroids, Comm. Math. Phys. 257 (2005), no. 3, 563-578.[2℄ A. Canas da Silva and A. Weinstein, Geometri Models for Nonommutative algebras, Berke-ley Mathematis Leture Notes, AMS Book, 1999.[3℄ A.S. Cattaneo, G. Felder, and L. Tomassini, From loal to global deformation quantizationof Poisson manifolds, Duke Math. J. 115 (2002), no. 2, 329-352.
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