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Abstract

This article concerns solutions to the anti-self-dual Yang Mills (ASDYM) equa-
tions in split signature that are global on the double cover of the appropriate con-
formally compactified Minkowski space M̃ = S2 × S2. Ward’s ASDYM twistor
construction is adapted to this geometry using a correspondence between points of
M̃ and holomorphic discs in CP

3, twistor space, with boundary on the real slice
RP

3. Smooth global U(n) solutions to the ASDYM equations on M̃ are shown to
be in 1:1 correspondence with pairs consisting of an arbitrary holomorphic vector
bundle E over CP

3 together with a positive definite hermitian metric H on E|
RP

3.
There are no topological or other restrictions on the bundle E. In ultrahyperbolic
signature solutions are generically non-analytic or only finitely differentiable and
such solutions arise from a corresponding choice of regularity for H. When E is
trivial, the twistor data consists of the Hermitian matrix function H on RP

3 up to
constants and the correspondence provides a nonlinear generalisation of the X-ray
transform. In general it provides a higher-dimensional analogue of the (inverse)
scattering transform in which H plays the role of the reflection coefficient and E
the algebraic data.

Explicit examples are constructed for different choices of the topology of E.
A scattering problem for ASDYM fields on affine Minkowski space in split sig-

nature is set up and it is shown that sufficiently small data at past null infinity
uniquely determines data at future null infinity by taking a family of holonomies
associated to the initial data followed by a sequence of two Birkhoff factorizations.
The scattering map is simple at the level of the holonomies, but non-trivial at the
level of the connection in the non-abelian case.

1 Introduction

The anti-self-dual Yang-Mills (ASDYM) equations have long been known to be an
integrable system, Ward (1977), Belavin & Zakharov (1978). However, they only
admit real solutions in Euclidean (positive definite) signature or split (ultrahyper-
bolic) signature. The integrability has allowed a substantial study of solutions to
the equations in Euclidean signature, see for example Atiyah (1979). Due to the un-
physical and peculiar nature of ultrahyperbolic differential equations, the solutions
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in split signature have not been so much studied. Nevertheless, the ASDYM equa-
tions in split signature have importance because their symmetry reductions give rise
to a wide class of integrable evolution equations, see Ablowitz & Clarkson (1991)
and Mason & Woodhouse (1996) for surveys. Although the main motivation for this
work is mathematical, it is worth noting also that the recent work of Witten (2004)
and others has shown that split signature versions of the twistor correspondence
provide a useful calculus for twistor string theory with significant applications in
perturbative gauge theory.1

The purpose of this paper is to adapt the Ward transform to split signature in
such a way as to provide a full study of global solutions to the ASDYM equations on
the double cover of the conformal compactification of Minkowski space and also of
the classical scattering of such fields on affine Minkowski space. The mathematical
motivation for the study of the global problem in split signature arises from two
sources. The abelian version of the Ward correspondence extends to all massless
fields as the Penrose transform between analytic first cohomology classes on re-
gions in twistor space PT = CP

3 and linear massless fields on corresponding regions
in space-time. In split signature, twistor space has a naturally defined real slice
PTR = RP

3 such that conformally compactified Minkowski space M is the space of
real lines in RP

3 (the real Klein correspondence). There is another transform in
split signature, the (generalized) X-ray transform: a smooth function f (or section
of an appropriate line bundle) on the real slice PTR = RP

3 ⊂ PT can be integrated
along lines in PTR to yield a function φ on ultrahyperbolic Minkowski space. It is a
classical result that φ is a solution to the ultrahyperbolic wave equation and that all
such solutions determine a unique f on RP

3, John (1938). There is a particular puz-
zle in that, globally on CP

3, the appropriate cohomology group is finite dimensional
whereas the X-ray transform shows that there are an infinite dimensional family
of solutions. One can nevertheless naively think of the function f as a preferred
Cech cocycle, Atiyah (1979). However, the task of finding how this cocycle comes
to be preferred and more generally what the precise relationship is between the
Penrose and the X-ray transform has led to a substantial literature: see for example
Guillemin & Sternberg (1986), Woodhouse (1992), Mason (1995), Sparling (1998),
Bailey, Eastwood, Gover and Mason (1999, 2003), Bailey & Eastwood (2001) and
remarks in §4.1 of this paper. Furthermore, it is this X-ray analogue of the Penrose
transform that is predominantly used in Witten (2004). The first motivation then
is to find the appropriate non-linear extension of the X-ray transform for ASDYM
fields.

The second motivation arises from the theory of integrable systems. For a hy-
perbolic or parabolic integrable system, the scattering transform usually expresses
general data for a solution in terms of a combination of solitonic and radiative or
dispersive modes, see for example Faddeev and Takhtajan (1987), Ablowitz and
Clarkson (1991). The solitonic modes are usually described by algebreo-geometric
data, whereas the radiative/dispersive modes are usually described by smooth func-
tions. The second motivation then is to find the analogous description of the AS-
DYM equations in split signature. Since many parabolic and hyperbolic integrable
systems are symmetry reductions of the ASDYM equations in split signature, this

1however, the use of the ‘wrong signature’ has also perhaps led to some of the technical problems of
twistor-string theory.
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would give some general insight as to how such constructions arise from their twistor
descriptions.

The main theorem is a correspondence for solutions to the anti-self-dual Yang-
Mills (ASDYM) equations with compact gauge group G on the double cover of the
conformal compactification of ultrahyperbolic Minkowski space M̃ = S2 × S2. The
correspondence is with certain data on complex projective three space CP

3, the
twistor space which we denote by PT, and its real slice RP

3 denoted PTR. We have

Theorem 1 Gauge equivalence classes of C∞ solutions to the ASDYM equations
on M̃ are in 1-1 correspondence with principal GC bundles P → PT together with a
C∞ reduction of the structure group to G over PTR where GC is the complexification
of G. The reduction of the structure group over PTR can be expressed as a section
H : PTR → P/G of the GC/G bundle P/G.

In the U(n) case, P is the principal bundle associated to a holomorphic vector
bundle E, and H defines a hermitian metric on the fibres of E restricted to PTR

(when G = U(n), GC/G is the space Hermn of n × n positive definite hermitian
matrices).

The techniques extend to the non smooth case: Ck,α solutions to the ASDYM
equations arise when H is in Ck+1,α′

for α′ > α. However, the techniques of the
proof lose too many derivatives in the forward direction to give a definitive theorem
whereas to obtain a definitive result one would need to gain at least one.

The theorem gives the space SG of gauge equivalence classes of solutions to the
ASDYM equations on M̃ the structure of a fibre bundle π : SG → HGC

where HGC
is

the space of holomorphic GC bundles over PT and the fibre π−1(P ) at P ∈ HGC
is the

space of sections H : PTR → P/G. The space HGC
has many components labelled

by the possible topological types of P . The different components are not, however,
smooth manifolds as arbitrary holomorphic bundles are allowed, including unstable
ones. Ignoring these subtleties, the individual connected components of HGC

are
finite dimensional. However, at a given P ∈ HGC

, the fibre π−1(P ) = Γ(PTR, P/G)
is infinite dimensional being a twisted analogue of smooth maps from RP

3 to GC/G
modulo at worst a finite-dimensional equivalence under the global automorphisms
Aut(P ) of P . When P or E is trivial Aut(P ) = GC, the corresponding component
of HGC

is a point and so the fibre is the quotient of the space of smooth maps
{Maps: PTR → GC/G} divided on the left by GC. Thus, for trivial P , the theorem
gives a direct nonlinear analogue of the X-ray transform. It also gives the appropri-
ate generalisation of the scattering transform for ASDYM fields with arbitrary P
as then the space HGC

is the appropriate algebreo-geometric generalisation of the
solitonic data, and H is the appropriate generalisation of the reflection coefficient
describing the radiative/dispersive modes of the field.

The motivation for the study of scattering arises from a number of areas. It has
long been suggested that scattering for integrable systems in dimensions greater
than 1+1 should be trivial partly as a consequence of Huygens principle, and as a
consequence of calculations in perturbation theory. This is very much not the case
for Ward’s integrable chiral model in 2 + 1 where there is right-angle scattering of
lumps and this is a symmetry reduction of the ASDYM equations in split signature.
Scattering for the ASDYM equations is trivial perturbatively in Lorentz signature,
but in the complex, and in particular in split signature, the relevant amplitudes do
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not vanish. Indeed it follows from the theorem above that in the case of trivial P
but non-trivial H, if one makes a choice of past and future infinity, although the
data on one of future or past infinity determines the whole field, the field obtained
at future infinity is different from that at past infinity and this is here developed
into a study of the scattering problem. The original motivation of the author was to
make some contact with the perturbative calculations of scattering in Witten (2004)
but the ASD sector is effectively suppressed there (as appropriate for scattering in
Lorentz signature).

The principal tool is a generalisation of the Ward construction adapted to split
signature. The standard Ward construction uses a correspondence between points
in space-time and Riemann spheres (complex projective lines) in twistor space and
encodes the original ASDYM field into a holomorphic vector bundle over (a region
in) PT. This generalisation uses a correspondence between points of space-time and
certain holomorphic discs in twistor space with boundary on the real slice PTR.

The paper is constructed as follows. In §2 the basic geometry of compactified
ultrahyperbolic Minkowski space M and its double cover M̃ is set up together with its
correspondence with complex twistor space PT and its real slice PTR. In particular
points of M̃ correspond to oriented lines in PTR = RP

3 that bound holomorphic discs
in PT. In §3 the main result Theorem 1 is proved and some of its consequences are
explored. In §4 we discuss various examples corresponding to different choices of the
topology of E etc., and those solutions that correspond to the pullback of ASDYM
fields that are pulled back from M = S2 × S2/Z2. Only the abelian examples are
given explicitly in this section—the non-abelian examples are discussed and shown
to exist here, but are only given in full detail in an appendix as a Kahler formalism
is required to express the solutions straighforwardly and this is only presented in
the appendix.

In §5 the construction is applied to the task of calculating the scattering of
characteristic data from past null infinity, I −, to future null infinity, I + when the
data is small.2 The scattering can be expressed simply in terms of certain holonomies
associated to the connection that is presented as initial data. The holonomies h of
the connection around a 3 parameter family of loops (two oriented loops for each
point in real twistor space) encodes the original data when both are small by a
theorem of Novikov (2002). This h is then related to the twistor data as derived in
§3 by a Birkhoff factorization on a family of lines in the twistor space. Generically,
the scattering will be nontrivial in the non-abelian case, being h → h−1. In the
abelian case it reduces simply to a sign reversal of the connection, but will be non-
trivial in the non-abelian case, requiring a sequence of two Birkhoff factorizations to
calculate the effect on the potentials. It is worth noting that in perturbation theory,
the amplitudes for the self-dual sector formally vanish in Minkowski signature, but
are non-trivial in the complex and in particular in split signature.

In §6 some further avenues are discussed. In the first apendix a technical lemma
required in the proof of theorem 2 is proved. In the second a formalism for the twistor
correspondence for M̃ is developed adapted to a choice of a complex structure on
M̃ given by an identification with CP

1 × CP
1. This is then used to give an explicit

description of the ADHM construction adapted to split signature to give global

2The division of null infinity I into future and past is not canonical in split signature, but we will
see that the scattering problem can nevertheless be made sense of.
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solutions with second Chern class 2, and to work through an example of the Ward
ansatze.

Finally we give some references to earlier and related work on these issues.
Lerner (1992) introduced a similar such H to describe ASD Yang-Mills fields in
split signature but did not fix the global behaviour and so does not incorporate
the bundle E or the gauge fixing that arises when E is trivial. The methods used
here are a development of those presented in Mason (1995) and §10.5 of Mason &
Woodhouse (1996) (which emphasized a non-Hausdorff twistor space construction).
A key improvement in this paper is the use of holomorphic discs with boundary on
RP

3 and this arises from analogous work in lower dimension with Claude LeBrun
on Zoll projective structures in dimension 2, LeBrun and Mason (2002). Similar
methods apply to the split signature version of the nonlinear graviton construction,
Penrose (1976), for anti-self-dual conformal structures on S2×S2 and this is treated
in a separate joint paper with Claude LeBrun, LeBrun & Mason (2005).

Acknowledgements: I would like to thank Claude LeBrun for a number of im-
portant contributions to this work. Thanks are also due to Toby Bailey, Maciej
Dunajski, Mike Eastwood, Gavin Kelly, Elmer Rees, George Sparling, Nick Wood-
house and the anonymous referee. I would also like to thank the Department of
Mathematical Sciences at the University of Edinburgh for hospitality for some of
the time while this work was being written up.

2 Twistors in split signature

2.1 Conformally compactified Minkowski space

We denote signature (p, q) Minkowski space by Rp,q which is Rp+q with a flat metric
of signature (p, q). The standard conformal compactification Mp,q of Rp,q is obtained
by adding a ‘lightcone at infinity’, denoted I and has a standard representation
as the projectivisation of the lightcone of the origin of Rp+1,q+1. We will only
be concerned with M2,2 which we will denote by M: it is a projective quadric of
signature (3, 3) in RP

5. It is easily seen to have topology S2 × S2/Z2 by choosing
coordinates (x,y) on R6, x,y ∈ R3, such that the quadratic form is Q = x ·x−y ·y
and · denotes the standard positive definite inner product on R3. Then the light
cone of the origin is given by Q = 0 which gives x · x = y · y and we can normalize
x · x = y · y = 1. Clearly this gives S2 × S2 in R6, and the projection to Q = 0 in
RP

5 is the quotient by the joint antipodal map σ̃ on each S2, σ̃ : (x,y) → (−x,−y).
The conformal structure on M is determined by requiring that the lines in RP

5 that
lie on Q = 0 are the null geodesics of M.

We will also be interested in the double cover, M̃ = S2 × S2 of M with covering
map σ : M̃ → M. Concretely we can parametrize M̃ by complex stereographic
coordinates w1 and w2 ∈ C so that

x =
(w1 + w̄1, iw̄1 − iw1, 1 − |w1|2)

(1 + |w1|2)
and y =

(w2 + w̄2, iw̄2 − iw2, 1 − |w2|2)
(1 + |w2|2)

and

ds2 =
4dw1dw̄1

(1 + |w1|2)2
− 4dw2dw̄2

(1 + |w2|2)2
. (1)
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If we take the volume form to be3

dVol =
dw1 ∧ dw̄1 ∧ dw2 ∧ dw̄2

(1 + |w1|2)2(1 + |w1|2)2

then the self-dual 2-forms are spanned by

dw1 ∧ dw2 , dw̄1 ∧ dw̄2 , and
4dw1 ∧ dw̄1

(1 + |w1|2)2
− 4dw2 ∧ dw̄2

(1 + |w2|2)2
(2)

and the anti-self-dual forms by

dw1 ∧ dw̄2 , dw̄1 ∧ dw2 , and
4dw1 ∧ dw̄1

(1 + |w1|2)2
+

4dw2 ∧ dw̄2

(1 + |w2|2)2
. (3)

2.2 Twistors

The twistor correspondence is the real Klein correspondence in which each point
p ∈ M corresponds to a line Lp in the real twistor space PTR = RP

3 (here TR

denotes real non-projective twistor space, R4 and T its complexification, C4). The
correspondence follows by representing a line in PTR by a 2-plane through the origin
in TR and then parametrizing such 2-planes by simple bivectors X ∈ ∧2TR = R6

up to scale. The simplicity condition is X ∧ X = 0 which defines the quadric
M ⊂ P(∧2TR) = RP

5. Under this correspondence, points of M̃ correspond to
oriented lines in PTR.

Twistor theory makes essential use of the complexification PT = CP
3 of PTR.

Each point x ∈ M̃ corresponds to a holomorphic closed disc Dx ⊂ PT lying in
the complexification CLσ(x) of Lσ(x) (denoting the image of x in M by σ(x)) such
that ∂Dx = Lσ(x) and so that the induced complex structure on Dx induces the
appropriate orientation on the boundary corresponding to x.

A real twistor Z ∈ PTR (resp. dual twistor W ∈ PT
∗
R) corresponds in M to a

totally null self-dual (resp. anti-self-dual) two-plane, referred to as an α-plane (resp.
β-plane) corresponding to the lines in PTR through Z (resp. lines lying in the plane
corresponding to W ).4

In order to expedite the correspondence, we introduce the (six-dimensional)
correspondence space F = {(x,Z) ∈ M̃ × PT|Z ∈ Dx} which naturally fibres over
both PT and M̃.

F

p ւ ց q

M̃ PT

(4)

The fibre of p : F → M̃ at x ∈ M̃ is the corresponding disc Dx ⊂ PT.
The real correspondence space FR = {(x,Z) ∈ M̃ × PTR|Z ∈ ∂Dx} is the 5-

dimensional boundary of F and fibres over PTR with fibres consisting of lifts of
α-planes with topology S2. For the fibre of q : F → PT at Z 6∈ PTR we have

3In LeBrun & Mason 2005 the opposite and more natural sign is taken for the volume form; the
conventions used here are consistent with those of Mason & Woodhouse (1996).

4In M̃ the general α-plane, with our conventions, is the graph of an orientation reversing isometry
from one S2 factor to the other, and the general β-plane is the graph of an orientation preserving
isometry from one S2 factor to the other. The above representation identifies real twistor space PTR with
SO(3) = PSU(2). Complex non-projective twistor space T can be represented as the space of complex
non-vanishing 2 × 2 matrices with real slice TR being given by those that are unitary up to a real scale.
This description is taken further in the appendix.
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Lemma 2.1 q : F − FR → PT − PTR is 1 : 1 and onto.

Proof: This follows from the fact that, given Z ∈ PT− PTR, there is a unique real
line L ⊂ PTR whose complexification CL contains Z since CL must also contain
Z̄ and therefore be the line joining Z to Z̄. Furthermore, Z determines the disc
D ⊂ CL containing Z with boundary L and so this D corresponds to an x ∈ M̃.
Thus Z determines x together with Z ∈ Dx.

Corollary 2.1 F −FR has a natural complex structure from its identification with
PT − PTR.

Remark: Analogous to the Atiyah-Hitchin-Singer definition of twistor space, we
note that F − FR has a natural interpretation as the bundle of metric compatible
complex structures on M̃ and its complex structure can be defined as in Atiyah,
Hitchin and Singer (1978). However, on FR the distribution defining the complex
structure has a real part and so the description breaks down.

2.3 Coordinates on an affine chart

If we we send the light cone I of a point i to ∞ we are left with an affine chart
R2,2 ⊂ M on which we can introduce standard Penrose notation, Penrose & Rindler
(1984 & 1986) adapted to split signature. Here we take the corresponding points
in M̃ to be i− given by (w1, w2) = (0, 0) or its antipode i+ = (∞,∞) and I is
the hypersurface |w1| = |w2|. Taking out I divides M̃ into two copies M± =
{±(|w1| − |w2|) > 0} of R4, one of which, say M+, can be taken to be ‘physical’
space-time. We use affine coordinates on M+ which can be expressed in terms of
(x,y) = (x1, x2, x3, y1, y2, y3) as

xAA′
=

1√
2(x3 − y3)

(
x1 − y1 x2 + y2

−x2 + y2 x1 + y1

)
, A = 0, 1, A′ = 0′, 1′ . (5)

Here spinor indices A,A′ are raised and lowered with the skew-symmetric spinors
εAB = −εBA and εA′B′ , ε01 = ε0′1′ = 1 and so transform under SL(2, R). The
conformal structure can be represented by the metric

ds2 = dxAA′

dxBB′

εABεA′B′ .

We can then introduce complex homogenous coordinates (ωA, πA′) on PT (which,
for real values restrict to real homogeneous coordinates on PTR). Then the corre-
spondence is given by the incidence relation

ωA = xAA′

πA′ (6)

which can be read either as an equation defining the α-plane in M+ for fixed
(ωA, πA′) or as an equation defining a projective line in PTR for fixed xAA′

.
The holomorphic discs in PT with boundary on PTR that correspond to points

of M± can be parametrized by complex homogeneous coordinates πA′ subject to
±iπA′π̄A′ ≥ 0 and ωA given by (6). In the + case, the homogeneous coordinates are
related to the standard disc coordinate z with |z| ≤ 1 by z = (π0′ +iπ1′)/(π0′ −iπ1′).

The spin bundle S has coordinates (xAA′
, πA′) and the restriction of F to M+ can

be identified with the subset of the projective spin bundle PS on which iπA′ π̄A′ ≥ 0
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with equality on FR. The fact that the map from F − FR is 1-1 can be expressed
as the fact that given (ωA, πA′) with iπA′π̄A′

> 0 equation (6) has the unique real
solution

xAA′

=
ωAπ̄A′

+ ω̄AπA′

iπB′ π̄B′ .

On S we define the twistor distribution D = {∂/∂π̄A′ , πA′
∂AA′} and this descends

also to PS. This is conformally invariant. On F−FR dim{D∩D̄} = 0, the projection
q is 1 : 1 and and D descends to give T 0,1 for the standard complex structure on
PT − PTR. The d-bar operator can be written

∂̄ = dπ̄A′
∂

∂π̄A′
+

1

πA′π̄A′
dxAA′

π̄A′πB′

∂AB′ (7)

On FR, dim{D∩D̄} = 2 and D∩D̄ = {πA′
∂AA′} is then tangent to the 2-dimensional

fibres of the projection q : FR → PTR.

2.4 The ASDYM equations and Lax pair

The ASDYM equations are equations on a connection D on a bundle E′ → M̃. In
a given local trivialisation D = d + A where A = AAA′dxAA′ ∈ Ω1(M̃) ⊗ u(n) for a
U(n) connection. The curvature is F = D2 = dA + A ∧ A. The ASDYM equations
are the condition that the curvature satisfies the anti-self-duality condition F ∗ = −F
where ∗ is the Hodge dual, F ∗

ab = 1
2εab

cdFcd. The curvature naturally decomposes
into its self-dual and anti-self-dual parts when expressed in spinors

FAA′BB′ = εABφA′B′ + εA′B′φAB ,

where φA′B′ = ∂A
(A′AB′)A + AA

(A′AB′)A (resp. φAB∂A′

(AAB)A′ + AA′

(AAB)A′) is the self-

dual (resp. anti-self-dual) part of the curvature. A connection is ASD iff φA′B′ = 0.
A Lax pair for the ASDYM equations on D is given by πA′

DAA′ in the sense
that [πA′

DAA′ , πB′
DBB′ ] = 0 iff the ASDYM equations hold (Ward 1977).

3 Global ASDYM fields in split signature

3.1 The generalised Ward correspondence

Our main theorem for U(n) ASDYM fields on M̃ is as follows

Theorem 2 There is a 1-1 correspondence between smooth U(n) ASDYM fields
on M̃ and pairs (E,H) where E is a rank n holomorphic vector bundles on twistor
space PT and H is a smooth positive definite hermitian metric on the fibres of E|

RP
3 .

If there exists an antilinear conjugation σ̃E : E → Ē∗ covering the standard
complex conjugation σ̃ : PT → PT that fixes PTR, such that H is induced by σ̃E by
H(v, v) = (σ̃Ev)(v̄) then the ASDYM field on M̃ is one that is pulled back from M.

A technical lemma required in the proof of this theorem is relegated to the first
appendix.

Proof (forward direction): We are given an ASDYM connection D = d + A on
the bundle E′ → M̃ where A is a 1-form on M with values in the Lie algebra of

8



U(n). In order to produce the pair (E,H) where E is a holomorphic vector bundle
over PT and H is a Hermitian metric on E|PTR, define first E → PT − PTR by
E = (q−1)∗p∗E′ where p and q are the projections of the double fibration (4). The
connection D lifts to give a connection on p∗E′ → F , and, away from ∂F , the map
q is 1 : 1 and hence this determines a connection on E = (q−1)∗p∗E′ over PT−PTR.
The connection determines a ∂̄-operator on E which can be represented in the affine
coordinates above as

∂̄E = dπ̄A′
∂

∂π̄A′
+

1

πA′ π̄A′
dxAA′

π̄A′πB′

DAB′ .

It is a standard calculation that ∂̄2
E = 0 as a consequence of the ASDYM equations

based on §2.4 and so (E, ∂̄E) is a holomorphic vector bundle over E|PT−PTR
.

We now define E → PTR to be the bundle whose fibre at Z ∈ PTR is the space
of covariantly constant sections over the corresponding α-plane in M̃ (the α-planes
in M̃ are simply connected, being S2s, and the anti-self-duality condition implies
that the curvature vanishes on each real α-plane so the space of covariantly constant
sections is well defined). Clearly, E|PTR

carries a hermitian metric H.
The definitions of E over PT−PTR and over PTR are quite different but we have

Lemma 3.1 The given definition of E → PTR is a smooth extension of E →
PT − PTR such that the d-bar operator ∂̄E extends smoothly over PTR.

The proof of this is relegated to an appendix. With this, E extends over all of PT

and its restriction to PTR has a naturally defined Hermitian metric H.

Proof (backward direction): Starting with a pair (E,H), we wish to construct
an anti-self-dual Yang-Mills field on M̃. We first construct a principal U(n) bundle
P ′ → M̃ whose fibre P ′

x at x ∈ M̃ is

P ′
x = {holomorphic frames g of E → Dx | g is unitary w.r.t. H on ∂Dx}

In order to see that this is well defined, we first choose a Stein neighbourhood U
of Dx in PT and choose a holomorphic trivialization of E over U . By an abuse of
notation, denote by g and H the matrices representing the frame g and Hermitian
metric H in this trivialisation of E. Then g(x,Z) must be holomorphic on Dx and
satisfy

gHg∗ = 1 (8)

on ∂Dx. This is a Birkhoff factorization of H as g∗ extends naturally to a holomor-
phic function on CLx−Dx since complex conjugation on PT restricts to CLx sending
Dx to CLx − Dx. In order for g to be well defined we first need to know that this
Birkhoff factorization always has trivial homomorphism factor from ∂Dx → GL(n)
(i.e., the matrix H|∂Dx to be factorized always lies in the ‘big cell’). This follows
from the fact that H is positive definite, see Gohberg & Krein (1958) or Mason
& Woodhouse (1996) proposition 9.3.6. Thus, a Birkhoff factorization gHg̃ = 1
exists for some g, g̃ holomorphic on Dx and CLx − Dx respectively, unique up to
g, g̃ → Ag, g̃A−1 for some constant matrix A . We need to show that we can choose
A so that g̃ = g∗. We first note that since H is Hermitian, we have that g̃∗Hg∗ = 1.
Therefore, eliminating H, on ∂Dx we have gg̃∗−1 = g̃−1g∗. However, the left hand
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side of this equation can be continued holomorphically over Dx, whereas the right
continues holomorphically over CLx − Dx, so together they define a matrix valued
function that is global on the Riemann sphere, and hence constant by Liouville’s
theorem. Under g, g̃ → Ag, g̃A−1 we have gg̃∗−1 → Agg̃∗−1A∗ and, since gg̃∗−1 is
Hermitian, A can be chosen to reduce gg̃∗−1 to the identity with the residual free-
dom of A such that AA∗ = 1, i.e., the unitary group. Therefore, P ′ → M̃ is well
defined and naturally has the structure of a principal U(n) bundle.

We now wish to construct an ASDYM connection on P ′. By construction, there
are natural trivialisations of P ′ over the α-planes in M̃ obtained by choosing, for
Z ∈ PTR, a unitary frame gZ of EZ , and requiring that, for each x with Z ∈ ∂Dx,
g(x,Z) = gZ .

Lemma 3.2 There exists a unique connection on P up to gauge transformations
such that the above frames are be covariantly constant. Such a connection is neces-
sarily anti-self-dual.

We construct the connection on P using g as follows. The expression g−1πA′∇AA′g
is holomorphically defined as a section of O(1) over each Dx and is skew-hermitian
on ∂Dx since πA′

∂AA′ is real and g is unitary there. (Here O(1) is the dual of
the tautological line bundle S → PS over the projective spin bundle; on each CP

1

fibre of PS, it restricts to the standard line bundle of Chern class 1 whose sections
can be represented by homogeneous functions of degree 1). It is therefore equal to
AAA′πA′

for some skew-Hermitian AAA′ depending only on x ∈ U ′ by an extension
of Liouville’s theorem. The extension of Liouville’s theorem in question states that
a holomorphic function on the unit disc that is real on the boundary is necessarily
a real constant. This follows from the standard Liouville theorem by extending the
function over the whole complex plane by setting f(z) = f(1/z̄) and noting that
the resulting function is continuous and hence holomorphic on |z| = 1 since it is real
there and so is a bounded holomorphic function on C. This extends to sections of
O(1) by considering (π0′)

−1g−1πA′∇AA′g which has a simple pole at π0′ = 0, but
is otherwise, via the above argument, holomorphic on the Riemann sphere and is
therefore equal to a skew Hermitian (π0′)

−1(AA0′π1′ −AA1′π0′) where AAA′ depends
only on x.2

In the case that H is induced by an anti-holomorphic map σ̃E : E → Ē∗ covering
the standard complex-conjugation, the ASDYM field can be constructed directly on
M via the standard Ward transform and the fact that it will give rise to a real
ASDYM field follows from the reality structure σ̃E . The construction works by
defining, for x ∈ M, E′

x = Γ(CLx, E) with Hermitian form induced by σ̃E . The
construction of the connection follows as above replacing g by the expression for a
frame of E′

x = Γ(CLx, E) that is unitary on the real slice in some local trivialisation
of E → PT on a neighbourhood of Dx. 2

Remarks.
1. This theorem can easily be extended to any compact gauge group G by embedding
G in U(n) for some n. The construction is most easily stated in terms of principal
bundles as in the introduction:

Theorem 3 Gauge equivalence classes of C∞ solutions to the ASDYM equations
with gauge group G are in 1-1 correspondence between principal GC bundles P → PT

together with a C∞ reduction of the structure group to G over PTR where GC is
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the complexification of G. The reduction of the structure group over PTR can be
alternatively expressed as a C∞ section H : PTR → P/G of the GC/G bundle P/G.

2. Unlike the case of Euclidean signature, solutions to equations in indefinite sig-
nature can have pretty much arbitrarily low regularity. It is clear that, taking
the correspondence in the reverse direction, the bundle P or E over PT is always
necessarily analytic by elliptic regularity, but H can be chosen to have any regu-
larity for which the Birkhoff factorization will work. If we work in a Hölder space
framework, the regularity of solutions to the Birkhoff factorization problem have
regularity Ck,α′

when H has regularity Ck,α for α′ < α assuming that there are
no jumping lines (as is the case here). This follows from the corresponding results
for the Hilbert transform and the implicit function theorem. The connection on
space-time is therefore of regularity Ck−1,α′

since one further derivative is taken.
This suggests that given an ASDYM connection on space-time of given regularity,
H can be shown to have one extra degree of regularity. However, the construction
of H from teh connection in the proof loses many degrees of regularity so these
methods will not yield a definitive theorem.

3.2 The topology of E

The theorem implies that any holomorphic vector bundle E → PT with hermitian
metric H on E|PTR

will give rise to anti-self-dual Yang-Mills fields with gauge group
U(n) so long as the hermitian metric H is positive definite—we do not need to
concern ourselves with ‘jumping lines’.

The topology of holomorphic vector bundles on CP
3 are characterised by the

Chern classes c1, c2 and c3 except in the case of rank 2 bundles for which c3 is trivial,
but when c1 is even, can admit a mod 2 ‘α-invariant,’ Atiyah & Rees (1976). All
such invariants can be non-trivial in contradistinction with the case of instantons on
S4, for which the only possible non-trivial topological invariant is the second Chern
class of the original Yang-Mills vector bundle on S4 which is the same as the second
Chern class of E → CP

3. Here c1 and c3 can be non-trivial also.
Firstly c2(E

′)(M̃) = 2c2(E)(CP
2) since c2(E

′)(M̃) can be represented as the
integral of (−1/8π2) trF 2 over M̃. This integral is the same as that over the quadric∑

α(Zα)2 = 0 in PT since this is a section of the fibration F −∂F = PT−PTR → M̃

(this geometry is explained more fully in appendix 2). However, the quadric is twice
the generator of the 2nd cohomology of PT.

Furthermore non-trivial c1(E) is also allowed. This arises from c1(E
′) since

c1(E)[line] = c1(E
′)[β-plane]/2 using the identification in the previous paragraph

since the β-plane becomes identified with a conic obtained by intersecting a plane
in PT with the quadric. Note that since E′ is flat on α-planes, c1(E

′)[α-plane] = 0
so the possible first Chern classes are measured just by evaluation on β-planes and
must be even from above. U(1) examples with nontrivial c1 will be given in the
next section.

More remarkably c3(E) can be non-trivial. For general gauge group there is a
mod 2 relation on c3, i.e., if c1 = c2 = 0, c3 must be even (Rees private commu-
nication), although for SU(2) there is only the α-invariant. At least in the SU(2)
case it is known that this invariant can be non-trivially realised with a holomorphic
vector bundle for any given even c1 and arbitrary c2, for example it is non-trivial
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for E = O(2) ⊕ O(−2) (although, of course, c2 is also non-trivial for this bundle),
Atiyah & Rees (1976).

Non-trivial c3 cannot arise from the topology of E′ → M̃ as M̃ is 4-dimensional
and indeed, non-trivial third Chern classes can arise when E′ is trivial by choosing
c1(E) = c2(E) = 0 but c3(E) 6= 0. To see where the topological non-triviality comes
from in this case, we note that for unitary groups, E|PTR

will be trivial so that a
trivialization of E|PTR

can be pulled back to FR and compared to the pullback of
a trivialisation E′. The gauge transformation between these trivializations gives a
map g : FR → U(n) and this will be topologically non-trivial when c3(E) or α are
non trivial.5

3.3 The case when E is trivial

For a ‘small’ ASDYM field, the topological invariants of E will necessarily be trivial
and this implies that E is analytically trivial. If E is trivial as a holomorphic vector
bundle, a holomorphic trivialization of E is unique up to a global constant GL(n, C)
transformation. In such a global trivialisation, H : RP

3 → Herm+
n where Herm+

n

denotes the space of n×n positive definite Hermitian matrices and H is defined up
to H → gHg∗ for constant g ∈ GL(n, C). Such equivalence classes of H completely
characterise ASDYM fields on S2 × S2 with ‘small’ data. The correspondence be-
tween H and the corresponding ASDYM field is a nonlinear analogue of the X-ray
transform (see below).

4 Examples

4.1 The abelian case

Consider first the case where E is the trivial line bundle. Then H is simply a real
non-vanishing function on PTR and the problem of constructing the corresponding
field on space-time proceeds by means of standard twistor integral formulae with
twistor function log H that go back to Ward and Sparling, see Ward (1977). In the
affine coordinates given before, the integral formula leads to the following standard
formula for the ASD Maxwell field

φAB(x) =

∮

ωA=xAA′
πA′

∂2 log H

∂ωA∂ωB
πC′dπC′

.

It is worth noting that because H1(PT,O) is trivial, there are no ASD Maxwell
fields on M. The Maxwell fields obtained from the construction above are odd under
the antipodal map on M̃ since the integral above requires an orientation on the line
Lx.

A further novelty is that H is a smooth function on PTR unique up to a constant
rather than an element of a cohomology class which would be the norm for a Penrose
transform. The transform here yields a helicity shifted variant of the standard X-ray
transform.

Naively, we can connect the f = log H with cohomology following Atiyah (1979).
Take f to be analytic and extend it to some neighbourhood U of PTR. On a

5It was erroneously assumed that these classes should vanish in Mason (1995).
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neighbourhood V of a line that is divided into two parts by U , say V = V0∪V1 with
V0 ∩ V1 = U ∩ V , it can be taken to be the Cech representative for a cohomology
class relative to that covering of V . (Alternatively a Dolbeault representative can
be obtained by extending f off U as a smooth but non-holomorphic function on PT

and, on a neighbourhood V of a line, we can consider the dolbeault form α such that
α = 0 on V0 and α = ∂̄f on V1.) Clearly such descriptions fail globally since, as the
space-time point does a circuit around a null geodesic in M, if we follow this path
with different choices of V , V0 and V1 will be interchanged and so f would have to
be identified with −f . This construction also fails to explain how the cohomological
gauge freedom is fixed.

One way to understand the construction globally and cohomologically is as fol-
lows. First, if such a function f = log H defined up to a constant is taken to be
analytic, it can be thought of as a relative cohomology element in H1

PT−U (PT) where
U is some small open neighbourhood of PTR via the connecting homomorphism of
the long exact relative cohomology sequence

. . . → H1(PT) → H1
PT−U (PT)

δ→ H0(U) → H0(PT) → . . .

using the observation that H1(PT) = 0 and H0(PT) = constants. The relative
cohomology then has a natural pairing with each (Dx, ∂Dx) which is realised by
the usual integral formulae. This ties in with a point of view developed in Mason
(1995) in which the twistor space is taken to be the non-Hausdorff space obtained
by gluing together two copies of PT along U . Cohomology on the space is given by
the relative cohomology group H1

PT−U (PT) by a result of Bailey (1985), see also §6
of Mason & Hughston (1990).

The detailed correspondence between the Penrose transform and the X-ray trans-
form has been much studied elsewhere, Woodhouse (1992), Mason (1995), Spar-
ling (1998), Bailey, Eastwood, Gover and Mason (1999, 2003), Bailey & Eastwood
(2001). This connection between the Penrose transform and X-ray transform is also
used in twistor string theory, Witten (2004) and Berkovits and Witten (2004).

The case where E is nontrivial: If E is a nontrivial line bundle, it must be
isomorphic to O(k) for some k. We must then take H to be a (real) non-vanishing
section of O(−2k) over PTR. Taking the simplest case, k = −1, we can set H =∑

α(Zα)2. This can be transformed explicitly to yield the U(1) gauge field with
curvature

F =
2dw1 ∧ dw̄1

π(1 + |w1|2)2
+

2dw2 ∧ dw̄2

π(1 + |w2|2)2
.

This gives rise to a gauge field with non-trivial first Chern class on M̃.6 Clearly the
metric efH−k on O(k) will give the sum of −k times the above solution with that
described above using the standard twistor integral formula for f .

4.2 The t’Hooft and Ward ansatze

Examples of non-abelian ASDYM fields with gauge group SL(2, R) on M̃ are con-
structed from the t’Hooft ansatze, with E = O(1) ⊕O(−1) in §10.5.2 of Mason &

6This is an analytic continuation of the ASD Coulomb/Dirac monopole solution centred on the complex
curves either x = 0 = y · y or y = 0 = x · x—the points of these curves correspond to the complex lines
in PT that generate the given quadric, see §I.6.2 of Hughston & Mason (1990).
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Woodhouse (1996).
It is not so easy to encode the reality conditions for real SU(2) solutions with

the t’Hooft ansatz (see, for example, the next section). Imposing a symmetry on M̃

along Im w1∂/∂w1 reduces the ASDYM equations to a Yang-Mills-Higgs system on
2+1 de Sitter space that has been studied by Kotecha & Ward (2001). The specific
solution actually considered by Kotecha & Ward is not smooth when pulled back
to M̃ (thus there is also a singularity at infinity in 2+1 de Sitter space), but the
ansatz can be adapted to give smooth solutions on M̃.

Reformulating §7 of Kotecha & Ward (2001) but without imposing the symmetry,
we consider the case where E = O(k) ⊕O(−k) and

H =

(
2Q−1 cosh f e−f

e−f Qe−f

)

where Q ∈ H0(PT,O(2k)) is a polynomial of homogeneity 2k that does not vanish
on PTR and f is a smooth function on PTR. A straightforward choice of Q is
Q = (

∑
α(Zα)2)k This can be used to give a solution by means of the Ward ansatze

as described in §8.2.4 of Ward & Wells (1990): we note that

H = FR , where F =

(
ef 2Q−1 cosh f
0 e−f

)
and R =

(
0 −1
1 Q

)

and that R : O(k) ⊕ O(−k) → O(−k) ⊕ O(k) is a global map of vector bundles
on PT. So, as far as the Birkhoff factorization is concerned, we are reduced to
an example of the Ward ansatze as detailed in §8 of Ward and Wells (1990) for
which the reconstruction of the space-time ASDYM field can be implemented by
quadratures.7 The full calculations are performed in appendix §B.4 where a more
detailed formalism is established that expedites the calculations.

4.3 Split signature instantons

The case in which H is induced from a reality structure on E is in effect the case
where the solution on M̃ is pulled back from one on M that is constructed from a
global holomorphic vector bundle over PT using the standard Ward construction.
This is what we will mean by a ‘split signature instanton’—there is no analogue of
the Bogomolny bound for the action by the second Chern class in split signature,
and so the concept of an instanton is not well defined, but these solutions are the
ones that are defined purely algebraically geometrically.

This case reduces to the standard Ward construction in which, in order to obtain
a regular solution on M, E must be trivial on restriction to the complex lines that are
complexifications of real lines. This non-singularity is in any case a consequence of
the assumption that the reality structure on E induces a positive-definite hermitian
structure on the restriction of E to the real slice since the triviality of E over Lx

follows by the same argument as given in the reconstruction of the ASDYM field
from the bundle. This in particular implies that c1(E) = 0. Furthermore E must
be semi-stable since if there is a destabilizing subsheaf, it will agree with O(k),

7The Kotecha Ward solution has k = 1, Q given as above, and f = log Q/((Z2)2 + (Z3)2), but f is

not smooth on all of PTR and so the pullback of the corresponding solution to M̃ is not smooth.
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k > 0, on a generic line and this will lead to E being non-trivial on a generic real
line. It is easy to see that if it is semistable but not stable, the subsheaf generically
isomorphic to O(0) will give rise to a line subbundle of E′ on space-time on which
the connection is trivial and so the connection will be reducible. Thus, assuming the
ASDYM connection on E′ is not reducible, we may assume E to be stable and the
ADHM machinery may be invoked to construct E and the solution on space-time
as described in Atiyah (1979).

Theorem 4 Split signature instantons necessarily have even c2(E) and exist for
c2(E) = 2.

Proof: In complexified Minkowski space, CM there is a hypersurface Σ on which
instantons are singular (points of Σ correspond to lines in CP

3 on which E fails to
be trivial) and we must choose our bundle E so that, not only are the fields real,
but also this hypersurface has no real points. The singular hypersurface has degree
c2(E) in P5 and determines E at least for c2(E) = 1 or 2, Hartshorne (1978). In the
case c2(E) = 1, the hypersurface is linear, and must be real for a real solution. It
is easy to see that it must then intersect M and indeed this will be the case for any
odd c2(E) as an algebraic hypersurface of odd degree will always have real points.

For c2(E) = 2, the singular hypersurface Σ is a quadratic cone on CP
5 of rank 3

subject to a certain ‘Poncelet’ condition, Hartshorne (1978). For reality, the 3-plane
in the kernel of this quadratic form is the complexification of a real R3 ⊂ R6 and
the quadric defining M restricts to be either Lorentzian or of definite sign on this
plane. The former cannot lead to smooth solutions, so we focus on the latter in the
following. In terms of our homogenous coordinates (x,y) ∈ R3×R3 on RP

5 we can,
after an SO(3, 3) transformation, express Σ as S(x,x) = x · x for some symmetric
trace-free matrix S. The ‘Poncelet condition’ of the conic S(x,x) = x · x with
respect to the conic x · x = 0 requires that for an arbitrary point x0 on x · x = 0, if
we construct the tangent l0 at x0 and its intersections with S(x,x) = x ·x at points
a1 and a2, then the other tangents to x ·x = 0 through a1 anda2 must meet on the
conic S(x,x) = x · x. This Poncelet condition is satisfied iff the tr(S2) = 3/2. It
is clear that this can be satisfied in such a way that Σ has no real points, i.e., with
the eigenvalues of S less than 1.2

Although these solutions can all be constructed explicitly by means of the t’Hooft
ansatze based on a solution to the ultrahyperbolic wave equation φ =

∑3
i=1 λi/(x−

xi)
2, the xi must be three points of the conic x · x = 0 tangent to the sides of a

Poncelet triangle as described above, and so cannot be real. Therefore φ cannot be
real and it will be difficult to identify the values of xi and λi that give rise to a real
solution or represent it in a real (unitary) gauge.

Instead, the ADHM construction is worked through in an appendix to give an ex-
plicit formula for the connection (it is not presented here as it requires a description
of the twistor correspondence that is only developed earlier in the appendix).

5 Nonlinear scattering theory

In this section we construct the map from initial data at −∞ to final data at +∞ at
least in the context of small data giving rise to small solutions (so that the topology
of both E and E′ can be taken to be trivial). The key idea rests on two facts.
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Firstly the intersections of α-planes in space-time with null infinity are circles, and
the flatness condition on α–planes implies that the holonomy around these circles
must be trivial. Secondly, we find that the characteristic data on past null infinity
can be encoded into holonomies in effect around two halves of such circles, one
associated to the part of the α–plane in past null infinity and the other in a fixed
family of α-planes associated to the ‘t = 0’ hypersurface dividing past from future
null infinity. The scattering map must then take these holonomies to their inverse
on the corresponding intersection of the α–plane with future null infinity. We need
to prove however that these holonomies uniquely determine and are determined by
the initial data, the final data and a compatible ASDYM field on M, at least for
small data.

The construction will involve taking the family of holonomies of the connection
and performing a sequence of two Birkhoff factorizations on the holonomies, the first
to find H (which determines the solution on all of M̃) and the second to find the
final data. The sense in which the data is small is that for the corresponding twistor
data, the holomorphic vector bundle E is trivial so that the solution is encoded into
H. It is also small in the sense that these Birkhoff factorizations do not jump. This
can be expressed as an analytic smallness condition on the asymptotic characteristic
data, see Novikov (2002) for an explicit statement of the smallness condition. These
calculations are nevertheless fully nonlinear.

We will see that the the calculation can be performed on restriction to certain
2-planes, β-planes, on the initial and final data surface I , so there is no interaction
between data posed on one β-plane and another.

5.1 The geometry

In split signature, the global structure does not provide a canonical decomposition
into past and future since there are two time-like directions and we must make an
(unnatural) choice of one of them to proceed. This is possible, and we will see that
we can define scattering in this way in spite of the signature.

The choice of infinity in this conformally invariant context is also arbitrary and
we do this first. We choose the point i− ∈ M̃ at past infinity and denote its antipode
by i+, future infinity. The data at infinity will be posed on the lightcone I of i−

which reconverges on i+. In order to make a choice of past and future, we choose a
linear hyperplane Σ in RP

5 that is not tangent to Q = 0, and separates i+ from i−

cutting I into I ±.
In the coordinatisation (w1, w2) of M̃ of equation (1), the points i− and i+ can

be taken to be w1 = w2 = 0 and w1 = w2 = ∞ respectively. The light cone I of i−

is the hypersurface |w1| = |w2| and reconverges at i+. We can coordinatise I with
(w1, η) ∈ C × S1 by setting

(w1, w2) = (w1, e
iηw1) .

I divides M̃ = S2 × S2 into two copies M± of affine R4 and we take M+ =
{(w1, w2); |w1| > |w2|} as physical space-time and discard M−. A convenient choice
for Σ is the hyperplane x3 = 0 or equivalently |w1| = 1 (i.e., x3/(x3 − y3) is taken
to be the time variable). Σ divides I into I ± = {±(|w1| − 1) ≥ 0} with I − being
past null infinity and I + future null infinity. The antipodal map on M̃ sends I

to itself giving a canonical identification between I + and I − (the light-cone of a
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point of I − reconverges on the ‘antipodal’ point on I +) and so we will be able to
compare initial data on I − to ‘final data’ on I +.

5.2 The characteristic data

Characteristic data for the ASDYM equations is a connection A on a bundle E′

over I − that is flat on the α-planes on I −.8 Taking a parallel propagated frame
of E′ from i− up the generators of I − will therefore yield a gauge in which A− =
A−(w1, η)(dη + iw1dw̄1 − iw̄1dw1) and this A−(w1, η) will be a smooth function
on I − with values in su(n) that vanishes at i−. We must also require that the
holonomy of A− about the unit circle in each w1 plane (of fixed η) should vanish
as these circles bound α–planes in M+ on which the connection must be flat. The
function A−(w1, η) is otherwise freely prescribable. To avoid some technicalities, we
will, however, assume that A−(w1, η) vanishes at Σ∩I (i.e., at |w1| = 1) and near
i−.9 Our aim is to show that A− gives rise to a unique solution to the ASDYM
equations on M+ and find a procedure to determine the ‘final’ data on I +.

5.3 β-planes and their twistor theory

The β-planes on I are given by w1 = eiηw2 and denoted W ′
η; they foliate I − i±.

All W ′
η intersect at i± but are otherwise disjoint and are topologically 2-spheres

with complex stereographic coordinate w1. The hypersurface Σ cuts W ′
η into the

two discs W ′±
η = {W ′

η,±(|w1| − 1) ≥ 0}.
The correspondence with twistor space PT is as follows. The points i± cor-

respond in twistor space to a real line I (the ± corresponding to the choices of
orientation of I). Each β-plane W ′

η on I is dual to a 2-plane Wη ⊂ PT that con-

tains I. Given Z ∈ PT − I, the corresponding α-plane αZ ⊂ M̃ intersects I in a
null geodesic that lies in a unique W ′

η as a great circle Z ′ = αZ ∩ W ′
η(= αZ ∩ I )

and we define Wη to consist of those Z such that αZ ∩ I ⊂ W ′
η. A point p ∈ W ′

η

corresponds to the line in the projective plane Wη consisting of those Z ′ through
p; thus Wη and W ′

η modulo the antipodal map (which reduces W ′
η from S2 to RP

2)
are in projective duality.

We can realise this in coordinates as follows. Given homogenous coordinates zi,
i = 1, 2, 3 on Wη, the corresponding null geodesic on W ′

η can be taken to be the
great circle represented in terms of the stereographic coordinate w1 as

z3(1 − |w1|2) + ℜ((z1 + iz2)w1) = 0.

This gives I as the line z3 = 0. The intersection Ση = Σ ∩ W ′
η = ∂W ′±

η is a
null geodesic corresponding to the point ZΣη ∈ Wη with homogeneous coordinates
(0, 0, 1). Thus, a general real twistor Z ∈ PTR−I can be parametrized by Z = (zi, η)
where zi ∼ λzi, λ ∈ R∗ (globally this is a blowup of I in PTR).

Let W̃η be the double cover of Wη. It can be represented as the unit sphere∑
z2
i = 1 and is in duality with the sphere W ′

η in the sense that points of one
corresponds to oriented great circles in the other.

8On I the two-surfaces on which w1w2 has constant phase are the α-planes.
9Both conditions are stronger than we need. The first guarantees the vanishing of the holonomy around

|w1| = 1 and makes certain choices we will make later canonical. The second condition guarantees that

A− is the restriction of a smooth 1-form from M̃ at i−.
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5.4 The scattering on W ′
η

In the following, we fix a value of η, and all our considerations will be concerned with
the relationship between initial data A− on W ′−

η , a U(n) valued matrix function

h(zi, η) on W̃η, twistor data H(zi, η) on Wη and then final data on W ′+
η .

Given the initial data consisting of the connection A− restricted to W ′−
η , we first

fix a covariantly constant frame f : E′ = Cn of the Yang-Mills vector bundle E′

around ∂W ′−
η (which exists as A− has trivial holonomy around ∂W ′−

η ).

Definition 5.1 We define h(zi, η) : W̃η → U(n) to be the holonomy around the

loop formed by the oriented geodesic in W ′−
η corresponding to (zi, η) ∈ W̃η and one

of the arcs of ∂W ′−
η required to close the semicircle (because of the vanishing of

holonomy around ∂W ′−
η , it doesnt matter which arc is chosen).

For Z̃ ∈ W̃η, a change in orientation of the corresponding geodesic in W ′
η corresponds

to Z̃ → −Z̃ and we will therefore have h(−Z̃ ′) = h(Z̃ ′)−1. We also note that as Z̃ ′

tends towards a semicircle of ∂W ′−
η , i.e., z1, z2 → 0, h → In.

Definition 5.2 We now define the twistor data H : PTR → Hermn, Hermn being
the n × n hermitian matrices, to be

H := g−∗g− (9)

where g− is the solution to the following Birkhoff factorization problem in the z3

variable:
h(zi, η)g−(zi, η) = g+(zi, η) . (10)

Here we have fixed a positive scaling of the homogenous coordinates by setting
|z2

1 + z2
2 | = 1 and g± extends holomorphically over ±ℑz3 ≥ 0 in the complex z3

plane for each real z1, z2, and we normalize g± by the condition that, at z3 = ∞,
h = g± = In. H is clearly a positive definite Hermitian matrix function of (zi, η).

Remarks: 1. This is where we use the smallness assumption on the data: the
Birkhoff factorization in general exists only when we also allow a factor of ∆ with
diagonal entries given by powers of (z3 + i)/(z3 − i), but ∆ is the identity matrix
for sufficiently small h.
2. We have also used the vanishing of A− on Σ∩I in the normalization conditions
for g±. Had we not done so, the normalization condition would be more complicated.

Lemma 5.1 H(−Z̃) = H(Z̃) so that H is defined on PTR.

Proof: We first note that g−∗g− = g+∗g+ follows from the unitarity of h. Further-
more, h(−Z̃) = h(Z̃)−1 implies that h(−Z̃)−1g−(Z̃) = g+(Z̃) so that g(−Z̃)± =
g(Z̃)∓ by the uniqueness of the Birkhoff factorization. Thus

H(−Z̃) = g+∗g+ = g−∗g− = H(Z̃) (11)

as required. 2

This H can now be used as in the main theorems to determine an ASDYM field
on M̃. We need to show that it correctly reproduces the initial data on I −. Clearly
we only need to see that it correctly reproduces the appropriate initial data on each
W ′−

η . It is sufficient to prove that the connection that it determines on W ′−
η leads

to the given holonomy matrix h(zi, η) because of the following theorem:
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Theorem 5 (Manakov & Zakharov 1981, Novikov 2002) Let A be a twice
differentiable U(n) connection on the projective plane RP

2 that vanishes on the
line at ∞, l∞ and let h be the U(n)-valued function on the space of oriented lines
S2 in RP

2 obtained by expressing the holonomy around each line in a fixed covari-
antly constant trivialisation of the bundle over l∞. Then if A is sufficiently small,
then h determines A uniquely up to gauge transformations.

The key ingredients of the proof of this theorem are contained in the Birkhoff
factorization of equation (10), the definition of H in equation (9) and the recon-
struction of the connection from H when E is trivial of Theorem 2.

We note that the theorem in Novikov (2002) is actually expressed in terms
of connections on R2 with suitable fall-of conditions, but they are easily seen to
be slightly weaker than the statement above. This applies to our situation by
considering Wη to be a double cover of a projective plane RP

2 using the joint
antipodal map on S2 × S2. Under this map, great circles map to lines and ∂W ′−

η

can be taken to be a double cover of the ‘line at ∞’, l∞; W ′−
η − ∂W ′−

η then maps

1 : 1 to RP
2 − l∞.

It remains to prove that the connection that H gives rise to on I − has holonomy
given by h. This in fact is a special case of a more general proposition which is
informative in its own right:

Proposition 5.1 Consider an ASDYM field on M̃ for which the twistor data has
trivial vector bundle E and is determined by a Hermitian metric H on E|PTR

. A

pair Z0, Z of α-planes in M̃ intersect in two antipodal points x± corresponding to
the two orientations of the line L in PTR joining Z0 and Z. Let l be a loop in Z0∪Z
going from x− to x+ in Z0 and returning in Z. In a fixed covariantly constant frame
on Z0, hl is related to H|L by

hl = g(x+, Z)g(x−, Z)−1 , (12)

where g(x±, Z) are the solutions to the Birkhoff factorizations

H = g∗(x±, Z)g(x±, Z) (13)

such that g(x±, Z) are respectively holmorphic on the two distinct holomorphic discs
Dx± ⊂ PT with boundary L whose union is the complex projective line CL obtained
by complexifying L.

Note that the holonomy hl of the ASDYM connection depends only on the topology
of l because the connection is flat on α-planes.

Proof: In the construction of (E,H) on PT from an ASDYM field on M̃, a frame of
E at a point Z ∈ PTR has the interpretation as a covariantly constant frame for the
Yang-Mills bundle over the corresponding α-plane Z ′ in M̃. On the other hand, in
the factorization problem H = g∗(x,Z)g(x,Z) where g is defined holomorphically
for Z ∈ Dx, g has the interpretation as a map from a frame of EZ (i.e., covariantly
constant on αZ to a unitary frame of E′

x. Putting these facts together, we see that,
if we normalize H(Z0) = g(x±, Z0) = Ir, in a given unitary frame for EZ0

, then
hl as given in equation (12) is the product of the map from a covariantly constant
frame along Z0 to a covariantly constant frame along Z at x− with the map from
the covariantly constant frame along Z at x+ to that on Z0 at x+ and is hence the
holonomy as required. 2
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Corollary 5.1 If H is defined according to equations (9) and (10), then the con-
nection that H gives rise to on I − has holonomy, as in definition 5.1 equal to the
holonomy from which it was obtained.

Proof: We wish to calculate the holonomies h(Z̃) of the Yang-Mills connection
around the loops in W ′−

η obtained by joining Z̃ ′ to one of the components of ∂W ′−
η .

These should be evaluated in a frame that is covariantly constant around ∂W ′−
η .

This is a special case of the above proposition as can be seen by taking Z0 = Zση

and Z ∈ Wη so that g(x±, Z) can be identified with g± of equations (10,9) and
(11). Thus, given H, equations (11) and (9) can be considered to be the Birkhoff
factorizations that give rise to a solution whose holonomy h(zi, η) is determined by
(10) and hence gives the original h(zi, η) as required. 2

5.5 Summary

The scattering map from initial data A− on I − to final data A+ on I + can be
constructed by first constructing a family of parallel propagators h(Z̃) : P̃TR →
U(n) along the intersections of the α-planes with I −; h is defined on the double
cover of twistor space. This can be used to find a hermitian metric H on the
restriction of a trivial bundle E to PTR via the Birkhoff factorization problems (10,
9). Finally, H can be used to recover an ASDYM field on M̃ and in particular final
data A+ on I + via the proof of theorem 2. each of these maps is 1 : 1 and onto
assuming small data.

5.6 The nontriviality of the scattering

We note that if we take theorem (5) as giving an equivalence between connections A−

on I − and holonomy data h(Z̃) on P̃TR, then the final data A+ is simply encoded
in the holonomy data h−1(Z̃). This follows directly because the total holonomy
around a curve in an α-plane must be the identity as the curvature of an ASDYM
connection is zero on α-planes. In these terms, the scattering might seem rather
trivial. In particular for U(1) connections we can see directly that there exists a
gauge in which the scattering map is just reversal of sign: A+ = −σ̃∗A− where σ̃ is
the antipodal map. However, for non-abelian connections, there is no such simple
formula relating A+ to A− and the scattering at the level of the connection will be
quite non-trivial. An appropriate geometrical analogue to consider here is the case
of a Zoll surface which is a topological 2-sphere with a metric whose geodesics are all
closed. Although Zoll perturbations of the round metric correspond to variations of
the conformal factor that are odd under the antipodal map, finite Zoll perturbations
are highly nontrivial and can only be completely characterised in the axisymmetric
case, see for example LeBrun & Mason (2002).

It is worth noting furthermore that theorem (5) is proved using the combination
of Birkhoff factorizations above and these are non-trivially different for antipodal
points x+ ∈ I + and x− ∈ I −. The twistor data giving rise to the fields at x±

is simply H restricted to the corresponding line Lx± which is the same line with
the ± determining opposite orientations. The discs Dx± meet at Lx± and make
up a complex line. To construct the ASDYM field at x±, we solve the Birkhoff
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factorization problems
H = g±g∗± (14)

where g± extend holomorphically over Dx± respectively. Since Dx± are complex
conjugate discs in PT, g∗± extend holomorphically over Dx∓ respectively. Thus the
two factorization problems in equation (14) are in opposite orders and will have
non-trivially distinct solutions in the non-abelian case.

6 Further developments

There are a number of questions that remain.
One problem is to find interesting examples of the different types of ASDYM

fields in split signature. We have constructed here solutions with c1 6= 0 but c2 =
c3 = 0, and in the appendix we have an example with c2 = 2, c1 = c3 = 0, but
it would be interesting to have also an example with non-trivial c3 or α-invariant,
but c1 = c2 = 0. We also have not produced non-abelian examples with trivial E,
but non-trivial H—such a solution would explicitly demonstrate the non-triviality
of the scattering.

Perhaps the most interesting questions relate to the relationship between the
constructions above and twistor-string theory. In particular, the version of twistor-
string theory due to Berkovits, see for example Berkovits & Witten (2004), focuses
on curves in PT with boundary on PTR. It would be intriguing to know how the
constructions of this paper sit as an ASD sector inside those of Berkowitz which
apply to the full Yang-Mills equations.

A Proofs for theorem 2

We first prove

Lemma (3.1): The given definition of E → PTR is a smooth extension of E from
PT − PTR such that the d-bar operator ∂̄E extends smoothly over PTR.

Proof: Choose a small neighbourhood U of Z ∈ PTR and a smooth frame f of E
over UR = U ∩ PTR. This determines a smooth frame q∗f of E′ over q−1(UR) that
is covariantly constant along the foliation of q−1(UR) by horizontal lifts of α-planes.
We extend this frame smoothly over q−1U as follows:

• We first construct a formal power series on q−1(UR) in a direction transverse
to q−1(UR) in q−1U by requiring that the formal power series be holomorphic
to all orders on the fibres of p in q−1U ⊂ F . Each fibre of p can be expressed
as an upper-half plane H on which f is defined on some interval on the real
axis. If z = x + iy is a holomorphic coordinate on H (say z = π1′/π0′ in some
affine coordinate system as above), then the condition ∂kf/∂z̄k = 0 for all
k determines ∂kf/∂yk uniquely for all k inductively in terms of ∂lf/∂xl for
l ≤ k. Thus the formal power series is defined uniquely and hence globally.

• Using Borel’s lemma, we can take a smooth extension of f to q−1U whose
power series on q−1(UR) is the given formal power series, and this can be
made global by use of a partition of unity.
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In the frame thus constructed, we have that the d-bar operator on twistor space
vanishes to all orders at PTR, and hence extends smoothly over PTR. This can be
seen as follows.

The d-bar operator is given by

∂̄E = dπ̄A′
∂

∂π̄A′
+

1

πA′ π̄A′
dxAA′

π̄A′πB′

∂AB′

+f−1

(
dπ̄A′

∂

∂π̄A′
+

1

πA′π̄A′
dxAA′

π̄A′πB′

DAB′

)
f

where DAA′ is the given Yang-Mills connection. We claim that the potentially singu-

lar latter term f−1
(
dπ̄A′

∂
∂π̄A′

+ 1
πA′

π̄A′
dxAA′

π̄A′πB′∇AB′

)
f vanishes at πA′

π̄A′ = 0

to all orders by construction. Firstly, the fact that ∂f/∂π̄A′ vanishes to all orders
at πA′

π̄A′ = 0 follows immediately from the construction.
By definition of E|PTR

, πA′
DAA′f = 0 when πA′ is real. Introducing an affine

coordinate z = (π0′ + iπ1′)/(π0′ − iπ1′) on the fibres of F (so that FR is given by
|z| = 1) the vanishing of ∂f/∂π̄A′ to all orders is equivalent to ∂kf/∂z̄k for all k.
Furthermore

(∂/∂z̄)k(πA′

DAA′f) = πA′

DAA′((∂/∂z̄)kf) = 0

so that, by uniqueness of the extension, πA′
DAA′f = 0 to all orders on q−1UR.

Hence the latter, potentially singular terms, vanish to all orders at UR and hence
extend smoothly over UR as desired.2

B Kahler structure and explicit solutions

We develop a formalism for the correspondence in the case that a complex structure
on M̃ is chosen. This reduces the symmetry group of twistor space from PSL(4, R)
to PSO(4). The affine coordinates of §2.3 respect the choice of a ‘Lorentz’ SO(2, 2)
subgroup of the space-time conformal group PSO(3, 3), but here we will focus in-
stead on a formalism that is invariant under the SO(3) × SO(3) subgroup of rigid
rotations of each of the S2 factors. This formalism is particularly well adapted to
giving explicit descriptions of certain exact solutions which are described after the
next subsection.

B.1 The pseudo-kahler correspondence

The space M̃ admits complex structures for which the metric (1) is scalar-flat
pseudo-kahler. The complex structure realizes M̃ as the complex manifold CP

1×CP
1

and via the representation of PT−PTR as the bundle of metric and orientation com-
patible complex structures over M̃, naturally embeds M̃ into PT as a quadric that
misses PTR.

On choosing a positive definite quadratic form Q on TR, we develop an SO(4)
invariant formalism. Let Zαα̇ be coordinates on T where α = 0, 1 and α̇ = 0̇, 1̇
are SU(2) spinor indices for SO(4) = SU(2) × SU(2)/Z2 (we use different indices
to avoid confusion with the SL(2, R) spinor indices used above for SO(2, 2)). Re-
call that for SU(2) spinors we raise and lower indices with the alternating spinors
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εαβ = −εβα, εα̇β̇ = −εβ̇α̇, ε01 = ε0̇1̇ = 1. We also have the quaternionic com-

plex conjugation xα → x̂α = (−x̄1, x̄0) so that TR consists of those Zαα̇ such that
Ẑαα̇ = Zαα̇.

Points of M̃ can be identified with points of the quadric Q ⊂ PT (using an
obvious abuse of notation)

Q = {Z ∈ PT|Q := Zαα̇Zαα̇ = 0}.

This gives Zαα̇ = xαyα̇ on Q and each of xα and yα̇ can be thought of as homoge-
neous coordinates on the CP

1 factors of M̃ = CP
1 × CP

1 as a complex manifold.
We take (xα, yα̇) to be homogeneous coordinates on M̃ normalized so that

xαx̂α = yαŷα = 1 related to the previous affine coordinates by w1 = x1/x0 and

w2 = y1̇/y0̇. Homogeneous functions f(xα, yα) will be said to have weight (p, q) if
f(eiθxα, eiφyα) = e(piθ+qiφ)f(xα, yα). Such homogeneous functions can also be taken
to represent sections of the tensor product of p copies of the spin bundle on the first
S2 factor with q copies of the spin bundle on the second factor.

We can introduce homogenous coordinates (xα, yα, λA) on F where λ = λ1/λ0,
|λ| ≤ 1 is a coordinate on the unit disc Dx, and λ0 has weight (−1,−1), λ1 has
weight (1, 1) so that λ has weight (2, 2) and the incidence relation is

Zαα̇ = λ0x
αyα̇ + λ1x̂

αŷα̇ .

This can be expressed implicitly as

Zαα̇xαŷα̇ = Zαα̇x̂αyα̇ = 0

which can be seen to reduce to one complex equation when Zαα̇ is real yielding
the formula xα ∝ Zα

α̇ ŷα̇ for real α-planes, i.e., a real α-plane is the graph of an
orientation reversing isometry from the second to the first factor.

In these coordinates the Lax pair can be expressed in terms of the holomorphic
and antiholomorphic exterior derivatives ðx, ð̄x and ðy, ð̄y on the S2 factors with
homogeneous coordinates xα, yα̇ respectively. Rather than taking these as form
valued operators we can instead can take them to have weights (−2, 0), (2, 0), (0,−2)
and (0, 2) respectively. We have

L0 = λðx − ð̄y , L1 = λðy − ð̄x .

L0 and L1 define the complex structure on the complement of ∂F and are tangent
to the fibration ∂F → PTR.

B.2 ADHM description of instantons with c2 = 2

Since the split-signature instantons correspond to stable bundles on PT they can
be constructed using an adaptation of the ADHM construction to split signature.
The ADHM construction expresses a rank n bundle E → PT with c2 = k as the
cohomology of the sequence

V
K·Z−→ W

K∗·Z−→ V̄ ∗ .

Here V,W are complex vector space of dimension k and 2k + n respectively, W has
a pseudo-Hermitian metric h (which is used to deine the ∗ operation below) and
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K : V ⊗T → W are linear maps such that K∗ ·Z ◦K ·Z = 0 for all Z. All bundles
corresponding to instantons arise in this way. Given the ADHM data of the matrices
K, the corresponding solution on space-time can be written down explicitly, Atiyah
(1979) and will be non-singular if certain non-degeneracy conditions are satisfied.

Here we work through the first non-trivial case of k = n = 2. In this case we
can choose our frames of T, V and W so that coordinates on these spaces have the
index structure Zαα̇ as above, vα and wα1α2α̇ = w(α1α2)α̇ respectively. In this frame

the map K is Kγ1γ2γ̇

αββ̇
= δ

(γ1

α δ
γ2)
β δγ̇

β̇
and the hermitian metric on W is

h(w,w) = wα1α2α̇ŵβ1β2β̇hα1α2β1β2
iε

α̇β̇
,

where hαβγδ = h(αβγδ) = ĥαβγδ and vα → v̂α is the standard quaternionic SU(2)
conjugation. With this, the ADHM equations K∗ · Z ◦ K · Z = 0 are satisfied.

In order to write down the corresponding solution on space-time, it is convenient
to use the representation of space-time above as the quadric Q. A point x ∈ M is
represented by the pair of spinors (xα, yα̇) which correspond to the line joining
Zαα̇

1 = xαyα̇ and Zαα̇
2 = x̂αŷα̇ in PT. The fibre E′

x of E′ → M at x can be
represented as the subspace of W in the kernel of K∗ ·Z1 and K∗ ·Z2. The projector
Px : W → W onto the subspace E′

x can be constructed as

Px = I − K · Z1∆(x)−1K∗ · Z2 + K · Z2∆(x)−1K∗ · Z1

where
∆(x) := K∗ · Z2 ◦ K · Z1 = −K∗ · Z1 ◦ K · Z2

and the latter identity follows from the ADHM equation. A smooth (but not holo-
morphic) unitary frame for E′

x ⊂ W is given explicitly by

U =
1√

h−1α1α2β1β2xα1
xα2

x̂β1
x̂β2

{yα̇h−1α1α2β1β2 x̂β1
x̂β2

, ŷα̇h−1α1α2β1β2xβ1
xβ2

}

The connection is given by projecting infinitesimally Ex to Ex+δx inside W , thus

∇U = PxdU ,

which can now be calculated explicitly by the reader with the energy and inclination.
We note that although a formalism based on the double cover M̃ of M has been

used here, the formula for Px is invariant under the antipodal map and the solution
descends to M.

The construction breaks down when ∆(x) = xγx̂δhγδαβ is singular. The deter-

minant of ∆(x) is d = xγx̂δhγδαβxǫx̂φhαβ
ǫφ and so ∆ is non-degenerate for all x if h is

non-degenerate when regarded as a symmetric trace-free 3 × 3 matrix over spinors
V αβ = v(αβ). (It is worth noting that the locus d = 0 in the complex is the same as
that defining the jumping lines as described in §4.3 given by S(x,x) = x · x where
S − 1 is identified with a constant multiple of hα1α2γ1γ2

hγ1γ2

β1β2
where the symmetric

pairs of spinor indices α1α2 are identified with 3-vector indices in the standard way;
it can be checked that the condition that S arises from a traceless spinor in this
way is equivalent to the Poncelet condition trS2 = 3/2.)
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B.3 Yang’s J-matrix formulation

On a (pseudo-)kahler 4-manifold, the ASDYM equations can be recast as the con-
dition that the bundle with unitary connection (E′,D) be compatible with the
complex structure and satisfy in addition the condition that ω ∧ F = 0 where ω is
the Kahler 2-form and F is the curvature of the connection. Given a holomorphic
vector bundle, Chern’s theorem states that unitary connections compatible with
the given complex structure are in 1 : 1 correspondence with hermitian metrics J
on E′. In a local holomorphic frame, the connection on the bundle is obtained by
differentiation of J and the ASDYM equation is given by ω ∧ ∂̄(J−1∂J) = 0. In the
physics literature, J has become known as Yang’s J-matrix.

In the simplest situation, E′ will be trivial as a holomorphic vector bundle over
M̃ = CP

1×CP
1 and so the holomorphic frame will be defined globally up to constant

GL(n, C) transformations. Thus so will J .
If E and E′ are both trivial, then J and H will be related by J(xα, yα̇) =

g(xαyα̇)−1g(xαyα̇)∗−1 where g is as defined in equation (8).

B.4 Explicit solutions from Ward ansatze

We consider the ansatze of §4.2 and work throught the procedure to obtain the
J-matrix of the bundle on M̃. We note that, as a holomorphic vector bundle over
Q, E′ is non-trivial since it is the restriction of E = O(1) ⊕O(−1) to Q from PT.
On Q, E′ = E|Q = O(1, 1) ⊕ O(−1,−1) where O(p, q) is defined to be the tensor
product of the pullback of O(p) from the first CP

1 factor (coordinatised by xα) with
O(q) from the second one (coordinatised by yα̇). Thus, the J matrix can only be
presented globally if its entries are understood to take values in the appropriate line
bundles.

In order to make clear the holomorphic nature of these line bundles we do not
in the following normalize xαx̂α = 1 etc.. We also use homogeneous coordinates
(λ0, λ1) on the discs Dx so that λ = λ1/λ0 and the incidence relation becomes

Zαα̇ = λ0x
αyα̇ + λ1x̂

αŷα̇ .

Note that when Zαα̇ is real, λλ̄ = 1, i.e., λ̄ = 1/λ. In terms of homogeneous
coordinates we have (λ0, λ1) = (λ̄1, λ̄0).

We consider the adaptation of the Ward ansatze given in §4.2 in the case that
k = 1 and Q is the quadric as above. We will take f to be an arbitrary smooth
function on PTR corresponding to an arbitrary smooth solution φ to the ultra-
hyperbolic wave equation on M by means of the X-ray transform of the function
f/Q which in these coordinates becomes

φ(x) =
1

2πi

∮

|λ|=1
f(xαyα̇ + λx̂αŷα̇)

dλ

λ
. (15)

An intermediate step in finding the solutions in the abelian case with patching
function is ef is to find a function g(x, λ) holomorphic in λ on each disc Dx = {|λ| ≤
1} such that f = g + ḡ on ∂Dx. Such a g can be obtained by the integral formula

g(x, λ) =
1

2πi

∮

|λ′|=1
f(xαyα̇ + λ′x̂αŷα̇)

dλ′

(λ′ − λ)
. (16)
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Clearly g is unique up to the addition of an imaginary constant which, in the formula
above, has been chosen so that g0 := g(x, 0) = φ(x).

The key step in finding the ASDYM field from the ansatze is to find the matrix
functions G(x, λ) holomorphic in |λ| ≤ 1 that satisfy GHG∗ = I on |λ| = 1 for the
given

H =

(
2Q−1 cosh f e−f

e−f Qe−f

)
.

If we set

G =

(
a b
c d

)

we should take a, c to be sections of O(1) and b, d of O(−1) that are holomorphic
over Dx = {|λ| ≤ 1} such that

aef = c̄ + Qd̄ , and (a + bQ)e−f = −c̄ .

These equations can be solved directly by expressing f in terms of g as above so
that

(a + bQ)e−g = −eḡ c̄ , and aeg = (c̄ + Qd̄)e−ḡ .

These expressions therefore determine sections of O(1) over ∂Dx that extend over
Dx holomorphically and whose complex conjugates do also. By an application of
an extension of Liouville’s theorem, they must therefore be the restriction of global
sections βAλA and αAλA of O(1) where αA and βA are independent of λA.10

This gives for a, b, c and d

a = e−gαAλA , b =
egβAλA − e−gαAλA

Q
, c = −e−gβ̄AλA , d =

egᾱAλA + e−gβ̄AλA

Q

However, we require that at Q = 0, b and d are regular and this requires that the
numerators of the fractions vanish there also. Using g(x, 0) = φ, this gives the
relations

β0 = e−2φα0 , and β̄1 = −e2φᾱ1 .

These determine βA in terms of αA and reduce the unit determinant condition to

1 = ad − bc = (1 + e−4φ)α0ᾱ0 + (1 + e4φ)α1ᾱ1 .

The J-matrix is J = G−1(x, 0)G∗−1(x, 0) and calculation yields that at λ = 0:

a = e−φα0λ0 , b = −e−g α1(1 + e4φ) − 2α0g′0
λ0

,

c = eφᾱ1λ0 , d = eφ 2ᾱ1g′0 + ᾱ0(1 + e−4φ)

λ0
10The standard argument is that if both a function g on ∂Dx and its complex conjugate ḡ extend

holomorphically over Dx, then its real and imaginary parts extend holomorphically over Dx also and
must therefore be constant. Alternatively, a holomophic function f on Dx that is real on ∂Dx is constant

since it can be extended to a bounded holomorphic function f(1/λ̄) on the complex plain by inversion
and continuity at ∂Dx. Here, the complex conjugates simply extend holomorphically over Dx as β̄AλA

and ᾱAλA since λA = λ̄A on ∂Dx).
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where g′0 = dg/dλ|λ=0. This gives

J =




2(cosh2 2φ+g′
0
ḡ′
0
)

λ2

0
cosh 2φ

−g′
0

cosh 2φ

−ḡ′
0

cosh 2φ

λ2

0

2 cosh 2φ


 .

In this formula we note the appearance of λ0 which is a coordinate up the fibre of
O(−1,−1). A section (s0, s1) of O(1, 1) ⊕ O(−1,−1) is here being understood as
being represented concretely by the homogeneous functions (s0/λ0, s1λ1) and it is
on expressions of this form that J provides a hermitian metric.

We also note the appearance of the function g′0(x). This from equation (16) can
be expressed as

g′(x, 0) =
1

2πi

∮

|λ′|=1
f(xαyα̇ + λ′x̂αŷα̇)

dλ′

λ2
. (17)

This can be obtained from φ as follows. Recall that the Lax pair on the spin bundle
can be represented in this context by L0 = λðx − ð̄y and L1 = λðy − ð̄x. Then,
L0f = L1f = 0 so that differentiation of equations (15,17) gives

ð̄xg′0 = ðyφ , and ð̄yg
′
0 = ðxφ .

Given φ satisfying the wave equation, these equations are integrable and can be
solved for g′0 in terms of φ.

As a final comment, we note that the wave equation on φ in this context is
simply

∆xφ = ∆yφ

where ∆x and ∆y are the round sphere Laplacians on the xA and yA′
spheres

respectively. The equation therefore clearly has separable solutions given as the
product of spherical harmonics φ = Ylm(xα)Ylm′(yα̇) on each factor.
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