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Abstract

We introduce a Chern-Simons Lagrangian for Yang-Mills theory as formulated on am-
bitwistor space via the Ward, Isenberg, Yasskin, Green, Witten construction. The La-
grangian requires the selection of a codimension-2 Cauchy-Riemann submanifold which is
naturally picked out by the choice of space-time reality structure and we focus on the choice
of Euclidean signature. The action is shown to give rise to a space-time action that is
equivalent to the standard one, but has just cubic vertices. We identify the ambitwistor
propagators and vertices and work out their corresponding expressions on space-time and
momentum space. It is proposed that this formulation of Yang-Mills theory underlies the re-
cursion relations of Britto, Cachazo, Feng and Witten and provides the generating principle
for twistor diagrams for gauge theory.

1 Introduction

Ambitwistor space A is the space of complex null geodesics in complexified Minkowski space.
It has complex dimension five and can be represented as the quadric Z · W = 0 inside
PT × PT

∗ where Z are homogeneous coordinates on projective twistor space PT = CP
3 and

W are homogeneous coordinates on its dual PT
∗. It has been known for many years that

it is possible to reformulate 4-dimensional Yang-Mills fields onto ambitwistor space via a
generalization of the Ward transform. A Yang-Mills connection on space-time is encoded
into a holomorphic vector E bundle over some subset of A. The Yang-Mills equations can be
expressed as the condition that the holomorphic vector bundle E → A extends to a certain
‘third formal neighbourhood’ of the natural embedding of A into PT × PT

∗, Isenberg et. al.

(1978). The construction can be stated more elegantly for N = 3 super-Yang-Mills fields
since the field equations hold automatically as a consequence of integrability along super light
rays. Such super-Yang-Mills fields correspond to holomorphic vector bundles over N = 3
super-ambitwistor space A[3] = {Z · W + ξ · η = 0; ([Z, ξ], [W, η]) ∈ PT[3] × PT

∗
[3]}, where

PT[3] = CP
3|3 is N = 3 super-twistor space, Witten (1978), Harnad et. al. (1985) and Manin

(1988) (and Ferber (1978) for super-twistors).
These constructions have not, so far, been particularly useful as a tool for studying

solutions to the full Yang-Mills equations. However, there has been recent interest arising
from progress in twistor-string theory, Witten (2004), and its spin-offs in perturbative gauge
theory, see Cachazo & Svrcek (2005) for a review. In addition to twistor-string theory in
twistor space, a twistor-string theory in ambitwistor space was also briefly proposed in Witten
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(2004), and a number of authors, Aganagic & Vafa (2004), Neitzke & Vafa (2004) and Kumar
& Policastro (2004) have argued that there should be a mirror symmetry relation between the
string theories in twistor space and in ambitwistor space. Furthermore, recurrence relations
for tree-level perturbative QCD scattering amplitudes were discovered by Britto et. al. (2005).
There it was proposed that, since the recursion allowed one to generate arbitrary tree-level
amplitudes from trivalent ones in an ambidextrous way, the relations might be understood
as arising from a twistor-string theory in ambitwistor space.

Whilst it is expected that such a twistor-string theory should be equivalent to a holomor-
phic Chern-Simons theory on (super) ambitwistor space, it has been unclear as to how to
formulate such a theory. The Chern-Simons form wedged against the natural super-Calabi-
Yau form only yields an (8|6)-form, whereas the space is (10|6) dimensional. Here we get
around this problem by restricting to a naturally defined 8-dimensional Cauchy-Riemann
(CR) submanifold AE of ambitwistor space A consisting of those complex null geodesics that
intersect a given real slice, here taken to be the Euclidean slice E. Such a Cauchy-Riemann
(CR) manifold has a naturally defined analogue ∂̄B of the ∂̄-operator and associated ∂̄B-
Dolbeault cohomology, and the cohomology is subject to the standard Penrose-transform
with fields on space-time. Similarly one can define CR vector bundles over AE and, subject
to topological triviality on the fibres, these will have a Ward correspondence with gauge
fields on E.

An analytic CR vector bundle on AE naturally has a unique extension to a holomorphic
vector bundle on a full neighbourhood of this submanifold in ambitwistor space, so this
subspace is sufficient to determine the full ambitwistor theory for analytic fields. However,
when the fields are non-analytic, as will generically be the case off shell or when the field
equations are satisfied in Lorentz or split signature, there will not be any extension and the
ambitwistor theory must necessarily restrict to one on this 8-dimensional submanifold.

We give a holomorphic Chern-Simons Lagrangian for a ∂̄B-operator on a bundle E over
the supersymmetric A[3]E. This can be extended straightforwardly to a holomorphic La-
grangian on the CR analogue PT[3] ×E PT

∗
[3] of PT[3] × PT

∗
[3] for A[3]E. We also give the

corresponding Lagrangians in the non-supersymmetric case and it is these Lagrangians that
we spend most time analyzing in this paper.

The Lagrangians gives a mechanism for writing down a perturbation expansion for Yang-
Mills theory involving the ambitwistor version of the fields. In this perturbative context, the
on-shell linearised fields can be understood as arising from standard twistor and dual twistor
cohomology classes. We give a preliminary examination of the ingredients of the Feynman
rules: in particular we give formulae for the propagators and vertices on ambitwistor space
and their transforms to space-time and momentum space. We note that, being based on
Chern-Simons theory, its Feynman diagram expansion has only trivalent vertices and this
suggests that this is indeed the expansion responsible for the BCFW recursion procedure
that is generated by trivalent vertices. It is likely that the Feynman diagrams for this action
will lead to a generating priniciple for the twistor diagram approach to scattering amplitudes
as developed in Hodges (2005).

In §2 we first review the standard results for reformulating Yang-Mills theory on am-
bitwistor space. In §3 we introduce the CR submanifold AE and discuss the basic CR mani-
fold theory, Ward transform and geometry. In §4 we introduce the ambitwistor gauge theory
Lagrangian and explain how it fits in with the standard results. In §5 we give a systematic
tranform of the action to space-time and show that the action is in fact equivalent to the
following gauge theory action

S[A, G] =

∫

E

tr(F ∧ G −
ǫ

2
G ∧ ∗G) (1)

where A is a Yang-Mills connection, F its curvature, G a Lie algebra-valued 2-form and
ǫ = 1/g2 where g is the coupling constant. The equations of motion are ǫG = ∗F and DG = 0
and so it gives rise to the standard field equations. This gives a space-time explanation for
how we can get away with a Feynman diagram expansion using only trivalent vertices. Note
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that it is an ambidextrous analogue of the Chalmers & Siegel (1996) Lagrangian that bears
a close relationship with twistor string theory in twistor space, see Witten (2004), Mason
(2005). In §6 we examine the perturbation theory arising from the ambitwistor Lagrangian.
We obtain expressions for the free field inner products, twistor transform, propagators and
vertices and their transforms to position space and momentum space. The position and
momentum space formulae for propagators and vertices are those from the Lagrangian (1).

Acknowledgements: The authors would like to thank Edward Witten for suggesting the
CR submanifold AE and Sebastian Uhlmann for asking an interesting question. We would
also like to acknowledge conversations with George Sparling on CR versions of ambitwistor
theory and applications of Chern-Simons Lagrangians in twistor theory.

2 The standard ambitwistor construction

An analytic Yang-Mills connection on a region in some real slice of complex Minkowski space
can be analytically continued to a connection A on a vector bundle E′ → U where U is a
complex Stein neighbourhood1 of the given region in complex Minkowski space CM.

Let AU be the subset of ambitwistor space consisting of complex null geodesics with non-
trivial intersection with U . We construct a holomorphic vector bundle E → AU by defining
the fibre El of E at l ∈ AU to be the vector space of covariantly constant sections of E′ along
the corresponding null geodesic. We have:

Theorem 1 (Witten (1978), Isenberg, Yasskin, Green (1978)) The bundle E → AU

determines and is determined by A. Furthermore any such holomorphic vector bundle E with

trivial first and second Chern classes determines a bundle E′ → U with connection A.

Briefly, the reconstruction works by defining E′ → U to be the bundle whose fibre at x ∈ U is
the vector space of global sections of E over the corresponding quadric Qx of null directions
in A. We can define parallel propagation along a light ray l from x to y by identifying E′

x

with El where l ∈ Qx and then to E′
y since l ∈ Qy also. It turns out that this definition of

parallel propagation arises from a connection on U .
In order to express the field equations we need to consider the natural embedding of

ambitwistor space as a quadric hypersurface in PT × PT
∗ where PT is projective twistor

space, the projectivisation of twistor space T ≡ C4, and PT
∗ is dual twistor space, the

projectivisation of T∗. If (Zα, Wβ), α, β = 0, . . . , 3 are homogeneous coordinates on PT×PT
∗,

then A is the subset ZαWα = 0.
The field equations are then expressed as follows:

Theorem 2 (Witten (1978), Isenberg, Yasskin, Green (1978)) The Yang-Mills con-

nection A satisfies the Yang-Mills equations iff the bundle E admits an extension to a third

order formal neighbourhood A(3) of A in PT × PT
∗.

There are a number of ways of saying what this means explicitly. In the following, this will
take this to mean that there exists a smooth bundle E over PT×PT

∗ with smooth ∂̄-operator
∂̄a satisfying ∂̄2

a = O((Z · W )4) at A.
There is also a formulation for super Yang-Mills. Super-twistor space PT[3] is

CP
3|3 = C

4|3/(Z, ξ) ∼ (λZ, λξ) λ ∈ C
∗

and here ξi, i = 1, 2, 3 are the odd coordinates with Z as before. Similarly (W, η) are
homogeneous coordinates on PT

∗
[3] and

A[3] = {((Z, ξ), (W, η)) ∈ PT[3] × PT
∗
[3]|Z · W + ξ · η = 0}.

We have

1we can and will require that the intersection of every complex null geodesic with U be connected and simply

connected.
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Theorem 3 (Witten (1978)) The field equations for N = 3 super Yang-Mills is equiv-

alent to the condition that the connection is integrable along super light-rays and this is

equivalent to the existence of a transform to a holomorphic vector bundle E over N = 3
super-ambitwistor space A[3]. Conversely, such a bundle determines a super Yang-Mills con-

nection satisfying the integrability along super light rays, and hence the constraints and hence

the field equations.

We note that the full details of this construction are quite complicated, see Harnad et. al.

(1985), and for the most part we will restrict attention to the non-supersymmetric version.

3 The CR ambitwistor space AE for Euclidean space

Let E = R4 be real affine Euclidean 4-space inside complex Minkowski space. Define the 8
dimensional submanifold AE of A to be the space of complex null geodesics that intersect E.
AE is naturally fibred over E, p : AE → E since null geodesics can only intersect E in one
point. The fibres are the space of complex null directions at the point which is a complex 2-
quadric Q = CP

1×CP
1 in the projectivised complexified tangent space. Thus, topologically,

AE = R4 × CP
1 × CP

1. We give an explicit coordinatisation below. Had we chosen a real
slice of complex Minkowski space of Lorentzian or split signature, the picture would not be
so simple as some complex geodesics intersect the real slice in more than just one point and
the corresponding points in AM will generically be singular. This is why we restrict attention
to Euclidean signature in the following.

In Euclidean signature, complex conjugation on complexified space-time sends an α-plane
Z to another, Ẑ, and the complex conjugation on non-projective twistor space is in fact

quaternionic in the sense that
ˆ̂
Z = −Z (i.e., complex conjugation defines a second complex

structure anti-commuting with the standard one). The conjugation therefore has no fixed
points on the projective space (it will be given explicitly below).

The space AE is the subset Z · Ŵ = 0 inside A. We give a coordinate based derivation
below. To see this using twistor geometry, we note that the condition Z · W = 0 is the
condition that the α-plane corresponding to Z and the β-plane corresponding to W intersect
in a complex null geodesic in complexified space-time. The condition that Z · Ŵ = 0 implies
that Z actually lies on the line formed by the intersection of the two planes Z ·W = 0 = Z ·Ŵ .
But this line corresponds to the intersection in space-time of the β-planes corresponding
to W and Ŵ which is necessarily a point of E (or infinity) so the complex null geodesic
corresponding to (Z, W ) must be incident with this real point since Z and W both are.

From its embedding in A, AE inherits a CR-structure, i.e., it has an inherited complex
3-dimensional integrable distribution D of (0, 1)-vectors that are the (0, 1)-vectors on A

whose real and imaginary parts are tangent to AE. On a CR manifold, there is a standard
construction of Dolbeault cohomology as follows. First define the space of (1, 0)-forms Ω(1,0)

to be the complex 1-forms that annihilate D and we define the (0, p)-forms,

Ω
(0,p)
B = Ωp/{Ω(1,0) ∧ Ωp−1}

where Ωp are the complex p-forms on AE. The subscript B in these definitions stands
for boundary as most studies of CR manifolds arise in the context of a real codimension-1
boundary of a complex domain. In our situation, however, AE has real codimension-2. Note
the asymmetry in the definitions, Ω(1,0) is 5 complex dimensional and is the restriction of

Ω(1,0) from A, whereas Ω
(0,1)
B is 3 complex dimensional and defined as a quotient. Define

the ∂̄B operator to be the restriction of the exterior derivative d to Ω(0,p); ∂̄2
B = 0 from the

integrability of D. Thus we can define ∂̄B-cohomology

Hp
B(AE) = {Ker ∂̄B/Im ∂̄B} ∩ Ω(0,p) .

We can also consider the analogue of holomorphic vector bundles which will be a complex
vector bundle E with a ∂̄-operator ∂̄a = ∂̄B + a where a is a (0, 1)-form with values in the
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endomorphisms of E and such that (∂̄a)2 = 0. The simplest bundles on AE are the line
bundles O(p, q) which are the restrictions of tensor product of the pullback of O(p) from PT

and O(q) from PT
∗ to A. The Penrose-Ward transform can be applied in the usual way to

give a correspondence between cohomology classes or bundles on AE and fields or bundles
with connections on E entirely analogously with the standard ambitwistor correspondences.

We do not here give a complete derivation of the Ward transform in this context, but
give an indication of the main argument. Given a topologically trivial ∂̄B-holomorphic vector
bundle over AE, it must be analytically trivial over each of the fibres of AE → E since the
only topologically trivial holomorphic vector bundle over the quadric is the trivial one. We
can define E′ → E to be the bundle whose fibre at x ∈ E is the corresponding space of global
sections of E → p−1(x). There is just one (0, 1) vector transverse to Q and, by integrability
of the CR-structure it varies holomorphically over Q. It naturally has a lift to act on E and
this lift must also be holomorphic and an explicit calculation shows that a generalization of
Liouville’s theorem applies to show that it must arise from a connection on E′ → E very
much as in the standard case.

If a ∂̄B cohomology class is analytic, then it extends naturally to a cohomology class
on a neighbourhood of AE in A so cohomology classes on such subsets of A are determined
by their restrictions to AE and the same is true of holomorphic bundles. This can be seen
by examining the ambitwistor correspondence: bundles or cohomomology classes on AE

correspond to fields on the appropriate region in E. The field is analytic iff the corresponding
cohomology class or bundle has an analytic representative. However, if one does have such
an extension from AE to a neighbourhood in A, the Penrose-Ward transform will give a
field on a complex thickening of E in CM and will therefore imply that the corresponding
field on E was analytic. Since this is not necessarily the case (unless one is working in
Euclidean signature and field equations are satisfied) everything is defined only on AE in the
first instance.

The above characterisations of the field equations suggest that we will also need to con-
sider the embedding of AE into a suitable real codimension-2 subset PT×E PT

∗ of PT×PT
∗.

Clearly the subset Z ·Ŵ = 0 extends smoothly across PT×PT
∗ and we take this to be the def-

inition of PT×E PT
∗. Note that the equation Z ·Ŵ = 0 constitutes two real non-holomorphic

conditions and so it defines a CR manifold of real codimension-2 type in PT × PT
∗. With

this definition, AE is the subset of PT ×E PT
∗ on which Z · W = 0.

3.1 The fibrations over E and explicit coordinatization

Here we develop further the geometry of the embedding of AE in PT ×E PT
∗ in the context

of the projections of PT, PT
∗ and AE to euclidean space E and its conformal one point

compactification S4.
In euclidean signature, twistor space and its dual have projections to S4. The most

primitive definition of a (dual) twistor is as a totally null (anti) self-dual 2-plane or α (β)-
planes in complex Minkowski space. These intersect S4 at precisely one point and this
leads to fibrations p : PT → S4, p : PT

∗ → S4 where we have abused notation to call all
such fibrations p. The fibres of these fibrations are CP

1s and can naturally be identified
with projective (anti) self-dual spinors. The non-projective twistor space T − {0} can be
identified with the total space of the bundle of self-dual spinors (minus the zero-section) and
similarly T∗ − {0} can be identified with the complement of the zero-section in the bundle
of anti-self-dual spinors. In Atiyah, Hitchin & Singer (1978), twistor spaces were defined in
a similar way as the the total spaces of bundles of metric and orientation compatible almost
complex structures. There they were represented as self-dual 2-forms of unit length, whereas
here we use the representation of a metric compatible almost complex structure by a spinor.
See Woodhouse (1985) for an introduction to the approach used here and a review of basic
twistor theory in this context.

We introduce coordinates (xa, yb), a, b = 0, 1, 2, 3 on E × E and coordinates (Zα, Wβ) =

((ωA, πA′), (λB , µB′

)) on PT × PT
∗, A = 0, 1 and A′ = 0′, 1′. We have ZαWα = ωAλA +
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πA′µA′

. The incidence relations with spacetime are

ωA = xAA′

πA′ , µA′

= −yAA′

λA ,

where xAA′

= σAA′

b xb and σAA′

b are the standard Van de Waerden symbols.
The Euclidean complex conjugation induces the spinor conjugation ωA → ω̂A = (ω̄1,−ω̄0)

and πA′ → π̂A′ = (π̄1′ ,−π̄0′). This extends to the conjugations

Z → Ẑ = (ω̂A, π̂A′) , W → Ŵ = (µ̂A′

, λ̂A)

With this notation, the fibration p : PT × PT
∗ → E × E is given by

p(Zα, Wβ) =

(

1

π̂B′πB′

(ωAπ̂A′

− ω̂AπA′

),
−1

λ̂BλB

(µA′

λ̂A − µ̂A′

λA)

)

.

The functions Z · W = (xAA′

− yAA′

)πA′λA, and Z · Ŵ = (xAA′

− yAA′

)πA′ λ̂A.
The fibres of p : PT × PT

∗ → E × E are the cartesian product of the Riemann spheres
parametrised by homogeneous coordinats πA′ and λA, so we can equivalently use the non-

holomorphic coordinates
(

(xAA′

, πA′), (yBB′

, λB)
)

on PT×PT
∗. The distribution D defining

the (0,1) vectors is given by

D = 〈πA′ ∂

∂xAA′
, λA ∂

∂yAA′
,

∂

∂π̂A′

,
∂

∂λ̂A
〉

The distribution can be equivalently defined as being those vectors that are orthogonal to
D3Z ∧ D3W where

D3Z = Dπ ∧ πB′πC′d2xB′C′

and D3W = Dλ ∧ λBλCd2yBC

where we define Dπ = πA′dπA′

, Dλ = λAdλA, and

d2xB′C′

= εBCdxBB′

∧ dxCC′

, d2yBC = εB′C′dyBB′

∧ dyCC′

.

On AE we have xa = ya and hence homogeneous coordinates (xa, πA′ , λA) (we leave it to
the reader to check that Z ·W = Z · Ŵ = 0 implies that xa = ya). The distribution defining

the (0, 1) vectors non-projectively is {πA′

λA∂/∂xAA′

, ∂/∂π̂A′

, ∂/∂λ̂A}. The (1, 0) forms are
spanned by {πA′dxAA′

, λAdxAA′

, dπA′ , dλA}.
In this notation we define

PT ×E
PT

∗ = {(Z, W ) ∈ PT × PT
∗|p(Z, W ) ⊂ E × E, Z · Ŵ = 0} .

We emphasize that the notation PT×EPT
∗ is not intended to indicate the fibre-wise product.

Whereas p : AE → E, p : PT × PT
∗ → S4 × S4 induces a fibration p : PT ×E PT

∗ → E × E.
On PT×E

PT
∗ we have that the fibres over E×E are CP

1 ×CP
1 as above on AE → E where

here E ⊂ E × E as the diagonal, but away from the diagonal, the fibres jump to CP
1 since

the constraint Z · Ŵ = 0 gives sAA′

πA′ λ̂A = 0 where 2sa = xa − ya. When sAA′

6= 0, we can
solve for λA up to scale

λA ∝ sAA′

π̂A′ .

Thus, projectively, we can coordinatise the fibre with just πA′ . The (1, 0)-forms are still
spanned by {πA′dxAA′

, λAdxAA′

, dπA′ , dλA}.

4 The Lagrangian

Let E → PT ×E
PT

∗ be a smooth complex vector bundle. The field variable is a (0, 1)-form
a with values in the endomorphisms of E so as to define an extension of ∂̄B to an operator

6



∂̄a on sections of E (we drop the subscript B as all ∂̄ operators in the following will be ∂̄B

operators). We give two versions of the action, the first being

S[a] =

∫

PT×EPT∗

tr
(

F (0,2) ∧ F (0,2)
)

∧
D3Z ∧ D3W

(Z · W )4
(2)

where D3Z = εαβγδZ
αdZβ ∧ dZγ ∧ dZδ, D3W is defined similarly and F (0,2) = ∂̄2

a. This
action is related to a holomorphic Chern-Simons action with an integration by parts since
∂̄BCS(a) = tr(F (0,2))2 where CS(a) = 1

2 tr(a ∧ ∂̄a + 2
3a3), so formally

S[a] =

∫

PT×EPT

CS(a) ∧ δ′′′(Z · W )D3ZD3W . (3)

where δ′′′(Z · W ) = ∂̄
(

1
(Z·W )4

)

is the third holomorphic derivative of the delta function.

Here we are defining, for a complex variable z,

δ(z) = ∂̄

(

1

z

)

= 2πiδ(ℜz)δ(ℑz)dz̄ , and δ′(z) =
∂

∂z
δ(z)

and so on. It can be checked that the homogeneity properties of δ-functions are such that
δ(λz) = δ(z)/λ and so on for the derivatives. Thus, since Z · W takes values in the line
bundle O(1, 1), δ(Z · W ) makes sense as a (0, 1)-form with values in O(−1,−1). Similarly
δ′′′(Z · W ) is a (0, 1)-form with values in O(−4,−4).

This second formulation leads to the ambitwistor formulation of the Yang-Mills equations
of theorem 2 directly in the form

F (0,2) ∧ δ′′′(Z · W ) = 0 ,

i.e., F (0,2) = O(Z · W 4), vanishing to 3rd order about Z · W = 0.
Note that, since the action integral is supported to 3rd order on AE, any variation a →

a+δa with δa = O(Z ·W 4) is a gauge symmetry over and above the standard gauge symmetry.

4.1 The supersymmetric version

It is also interesting to consider a supersymmetric version of this action. We start with the
N = 3 supertwistor space T[3] = C

4|3 with coordinates (Zα, ξi), i = 1, 2, 3 where ξi are
Grassmann-odd. The dual supertwistor space T∗

[3] likewise has coordinates (Wβ , ηj) and we

projectivise with the usual equivalence (Zα, ξi) ∼ (λZα, λξi), λ ∈ C∗. Super ambitwistor
space is then defined as

A[3] =
{

([Zα, ξi], [Wβ , ηj ]) ∈ PT[3] × PT
∗
[3] ; ZαWα + ξiηi = 0

}

.

Super ambitwistor space is (for N = 3) a Calabi-Yau supermanifold as it possesses a global
holomorphic measure

Ω =

∮

D3Z ∧ d3ξ ∧ D3W ∧ d3η

Z · W + ξ · η
,

where the contour is taken around any S1 encircling A ∈ PT × PT
∗. The integrand has

weight (0, 0) under the scaling of homogeneous coordinates (since dξ 7→ λ−1dξ by the rules
of Berezinian integration) and has a pole on Z ·W + ξ ·η = 0. Hence it localizes on A[3] after
performing the contour integral, and defines a holomorphic measure.

As above, we can write our action on the ambient space PT[3] ×
E

PT
∗
[3]

S[as] =

∫

PT[3]×EPT∗

[3]

tr(F (0,2))2 ∧
D3Z ∧ d3ξ ∧ D3W ∧ d3η

Z · W + ξ · η
,

7



where now as ∈ Ω
(0,1)
B ⊗ End(E) defines a ∂̄B-operator on the smooth complex bundle

E → PT[3] ×
E PT

∗
[3]. Integrating by parts as above, we obtain a holomorphic Chern-Simons

theory directly on A[3]E with action

S[as] =

∫

A[3]E

CS(as) ∧ Ω

where we have used ∂̄(Z · W + ξη)−1 = δ(Z · W + ξ · η) and integrated out the δ-function.
Thus, in the supersymmetric theory, all the information is present on A[3]E and we do not

have to consider the ambient PT[3] ×
E PT

∗
[3]. Essentially, this is because the Grassmann-odd

directions mimic the effect of the extension to the third formal neighbourhood, Eastwood &
LeBrun (1986). We can recover the non-supersymmetric theory by considering only those
terms in A which are independent of ξ and η, or equivalently, by setting the superpartners
of the standard spin-1 gauge field to zero. In this case, the only terms which survive the
Grassmann integration come from the term (ξ·η)3/(Z ·W )4 in the expansion of (Z ·W+ξ·η)−1,
and we recover our non-supersymmetric action.

5 Relation to standard Yang-Mills action

It is clear from the above that the solutions to the field equations arising from the action
principles given above should give rise to solutions of the Yang-Mills equations. In this
section we give an explicit proof and show that the actions can in fact be identified, at least
on solutions to the equations of motion.

Given a Yang-Mills connection A on a bundle E′ → E, we consider an arbitrary smooth
extension A to E×E where ∆ : E → E×E is embedded as the diagonal. We will restrict the
action to ∂̄B operators on bundles over PT ×E PT

∗ that are induced from such connections
pulled back from E × E. The reason we can assume that our ∂̄B-operators are obtained in
this way is because the part of the field equation ∂̄2

a = O(Z · W 2) on AE, together with the
gauge freedom to alter a at higher order away from AE will imply that the ∂̄B-operator is
gauge equivalent to one obtained from a connection pulled back from E×E in this way, and
so this will necessarily be the case when some of the ambitwistor field equations are satisfied
(although the Yang-Mills equations themselves are not implied at this point).

The action then becomes:

S[A] =

∫

PT×EPT∗

tr F2 ∧
D3Z ∧ D3W

(Z · W )4

where F is the curvature of the connection A. On Z · Ŵ = 0, we have that λA = (xAA′

−
yAA′

)π̂A′ up to scale and, since the integrand is scale invariant, we can eliminate λA and
then integrate over the S2 fibres away from the diagonal over E × E. Introduce

sa =
1

2
(xa − ya) , ra =

1

2
(xa + ya) .

We have
∫

sAA′
λAπ̂

A′=0

Dλ ∧ Dπ
πA′πB′λAλB

(2sAA′λAπA′)4
= 16πi

sA(A′sB′)B

3(s · s)3

where the integral is over the S2 fibres away from the diagonal over E × E (this follows in
particular from §3 of Woodhouse 1985). Thus, performing the fibre integrals we obtain

∫

Z·Ŵ=0

D3Z ∧ D3W

(Z · W )4
= 16πi

sAA′sBB′

(s · s)3
d2xA′B′

d2yAB

so that we obtain the action for the connection A:

S[A] =

∫

E×E

trF2 ∧
sAA′sBB′d2xA′B′

d2yAB

(s · s)3
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on E × E (recall that we have assumed that the connection itself has no dependence on
the fibre coordinates). We now choose a frame for the bundle, write trF2 = dCS(A) and
integrate by parts. We have the relation

d

(

sAA′sBB′d2xA′B′

d2yAB

(s · s)−3

)

=
8π2

3

∂δ4(s)

∂sAA′
dsBB′ ∧ d2xA′B′

∧ d2yAB

= −2π2 ∂δ4(s)

∂sAA′

(

d3xA′

B d2yAB + d2xA′B′

d3yA
B′

)

where d3xa = ∗ dxa = 1
6εa

bcddxb ∧ dxc ∧ dxd; the formula follows from the derivative of the

standard relation ∇a∇a(1/s · s) = 4π2δ4(s). Integrate by parts on the ∂/∂sAA′

derivatives
to obtain the action (ignoring irrelvant overall constant factors)

S[A] =

∫

E×E

∂CS(A)

∂sAA′
∧ δ4(s) dsBB′ ∧ d2xA′B′

∧ d2yAB

=

∫

E×E

tr

(

∂A

∂sAA′
∧ F −

1

2
d

(

A ∧
∂A

∂sAA′

))

δ4(s) dsBB′ ∧ d2xA′B′

∧ d2yAB

We now integrate by parts on the second term to obtain an expression in the ∂δ4(s)/∂sCC′

and integrate by parts back on the ∂/∂sAA′

derivatives again to obtain

S[A] =

∫

E×E

tr

(

∂A

∂sAA′
∧ F −

1

2

∂

∂sc

(

A ∧
∂A

∂sAA′

)

dsc

)

δ4(s) dsBB′ ∧ d2xA′B′

∧ d2yAB

The indices in the second term turn out to be skew over a and c and so no second derivative
terms in sa appear. We can now integrate out the sa using the delta functions to obtain the
action as a functional of A and its first derivative on sa = 0. To simplify the calculation,
choose an arbitrary gauge at sa = 0 and parallel propagate the frame out along sa(∂/∂xa −
∂/∂ya). Then set A = Ax

adxa + Ay
adya and expand in sa

Ax
a =

1

2
Aa + Ax

abs
b + . . . Ay

a =
1

2
Aa + Ay

abs
b + . . . (4)

where Aa(rb) is a given gauge field on E, and Ax
ab and Ay

ab are functions of ra only and the
gauge condition (which has already been used in the above) also implies that Ax

(ab)−Ay

(ab) = 0.

The action reduces to a functional of Aa, Ax
ab and Ay

ab. Decomposing into irreducibles, we
discover that some of the irreducible pieces of Ax

ab and Ay
ab decouple from the other fields and

appear quadratically in the action so that the field equations make them vanish. Eliminating
these we are left with Aa and a Lie algebra valued 2-form G with action

S[A, G] =

∫

trG ∧ F −
1

2

∫

tr G ∧ ∗G , (5)

where F is the curvature of the connection A. The field equations from this action are simply
G = ∗F and DG = 0 and so we see that, eliminating G from the action, we finally obtain
the standard Yang-Mills action.

6 Perturbation theory

The action allows us to consider perturbation theory. In perturbation theory we take the
(0, 1)-form a to be ‘on-shell’ in the sense that it satisfies the field equations of linear theory. In
linear theory we can take a to be a Lie algebra valued element of H1(AE,O). The extension of
such a cohomology class to 3rd order in PT×EPT

∗ implies extension to all orders (this can be
seen by the sheaf theoretic arguments of Baston and Mason 1987). By the Kunneth formula
(or simply by the Penrose transform and the fact that linear fields decompose into self-dual
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and anti-self-dual parts) we can write a = a−(Z) + a+(W ) and the notation indicates that
a−(Z) is pulled back from a class in H1(PT

′,O), i.e., a−(Z) is a (0, 1)-form pulled back from
twistor space and a+(W ) is one pulled back from dual-twistor space. (PT

′ = p−1(E) is PT

with the line corresponding to the point at ∞ taken away—the cohomology of PT is at most
finite dimensional.)

To construct Feynman diagrams from this action, we note that the vertices coming from
the Chern-Simons action are all trivalent. (The possible 4-vertex coming from the tr(F 2)
form of the action vanishes identically.)

6.1 The inner product, twistor transform and propagators

The symplectic inner product on such linear fields can be derived from the Lagrangian in
the standard way as the boundary term in the variation of the action. This gives

〈a1, a2〉 =

∫

Contour

tr (a1 ∧ a2) δ′′′(Z · W )D3Z ∧ D3W (6)

This is the integral of a closed 9-form over the contour obtained by the intersection of
Euclidean space with Lorentzian space. Using the delta-function to restrict the integral to
AE, the contour can be taken to be the part of AE fibering over this intersection of the
Euclidean with the Lorentzian slice. This symplectic inner product yields a positive definite
inner product on positive frequency fields on Minkowski space: such fields extend over the
t ≥ 0 half of Euclidean space (where t = 0 is the intersection with Minkowski space) and
taking a1 to be such a positive frequency field, and a2 to be its Minkowskian complex
conjugate, so that it extends over t ≤ 0, the above integral gives the standard norm.

In twistor theory there is an alternative representation of helicity ±1 fields in terms
of twistor functions of homogeneity degree −4, g+(Z) ∈ H1(PT

′,O(−4)) and g−(W ) ∈
H1(PT

∗′,O(−4)). These are related to the homogeneity degree 0 representation by

g+(Z) =

∫

Z·Ŵ=0

a+(W ) ∧ δ′′′(Z · W )D3W .

This is an integral of a 5-form over the four-manifold W · Ẑ = 0 and can be checked explic-
itly using the explicit Dolbeault representatives of Woodhouse (1985) in which a+(W ) =

A(y)AA′λAλ̂BdyBA′

and g+(Z) = ∂̂(φA′B′(x)π̂A′

π̂B′

/(π̂ · π)3), φA′B′ = ∇A
(A′AB′)A and

∂̂ = dẐα∂/∂Zα (here we use the notation of §3.1).
It is worth noting that this twistor transform relation also works in this context off-shell,

i.e., ∂̄a does not need to vanish although, in that case, ∂̄g+ will not vanish either, but the
push down of g+ ∧ D3Z from PT to E will be the self-dual 2-form corresponding to the
potential A+ on E whose pullback to PT

∗ and projection onto Ω0,1 determines a+(W ).
Using the twistor transform, we can verify that the symplectic inner product gives the

standard expression by taking a1 to be pulled back from PT
∗ and a2 from PT to give

〈a1(W ), a2(Z)〉 =

∫

t=0

tr (a1(W ) ∧ a2(Z)) δ′′′(Z · W )D3Z ∧ D3W

=

∫

tr (g1(Z) ∧ a2(Z)) ∧ D3Z .

This is a standard expression for the inner product in twistor theory in which the t = 0
contour becomes PN , the space of null twistors in Lorentz signature that correspond to real
light rays in Minkowski space.

The Chern-Simons propagator ∆ is formally ∂̄−1 acting on Ω0,1 with appropriate bound-
ary conditions. If we write ∂̄a = j where the current j is a closed (0, 2)-form, then we have
that currents and potentials are dual by

(j, a) =

∫

a ∧ j ∧ δ′′′(Z · W )D3Z ∧ D3W .
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The propagator then can be expressed as the integral kernel ∆ satisfying the formal relation

j1∆j = (j1, a) ∀j1 ⇔ ∂̄a = j. (7)

We have the following formula for ∆

j1∆j2 =

∫

j1 ∧ j2
D3Z ∧ D3W

(Z · W )4
,

and (7) can now be verified directly by integrating by parts.

6.2 Space-time and Momentum space Feynman rules

It is most likely that the direct application of Feynman rules to this action yields a version
of the twistor diagram formulation of scattering amplitudes; see Hodges (2005) for a recent
discussion. Indeed it is to be hoped that this action provides a generating principle for
twistor diagrams. Here it is simplest, however, to convert the diagram formalism into a set
of position space and momentum space Feynman rules. We first consider the 3-vertex. This
arises from the a3 term in the Chern-Simons form and so the corresponding 3-vertex will
arise if we put three on-shell linearized fields a1, a2 and a3 into the formula

V (a1, a2, a3) =

∫

tr (a1 ∧ a2 ∧ a3) ∧ δ′′′(Z · W )D3Z ∧ D3W .

In order to obtain a non-trivial result, we cannot have that all of the as are functions of Z
(or all functions of W ) as the forms will wedge to give zero. Thus we can take without loss
of generality either a1 = a1(Z), a2 = a2(Z) and a3 = a3(W ) to give the − − + vertex or
a1 = a1(W ), a2 = a2(W ) and a3 = a3(Z) to give the + + − vertex. We focus on the −− +
case as clearly the + + − case works similarly. We first partially integrate using the twistor
transform

g3(Z) =

∫

PT×EPT|
Z=const.

a3(W ) ∧ δ′′′(Z · W )D3W

as above. This then gives the formula for the vertex as

V (a1, a2, a3) =

∫

PT

tr(a1 ∧ a2 ∧ g3) ∧ D3Z .

To evaluate this, we note first the standard integral formula for a self-dual Maxwell field G3

in terms of a homogeneity degree −4 cohomology class g3 is

G3 = G3A′B′(x)d2xA′B′

=

∫

p−1(x)

g3 ∧ D3Z .

Secondly, the Woodhouse (1985) explicit representatives for a homogeneity degree 0 class
a1(Z) is simply the (0, 1) part of p∗A1 where A1 is the corresponding potential 1-form on E.
But a1 ∧D3Z = p∗A1 ∧D3Z because wedging with D3Z projects out the holomorphic part
of a 1-form. Thus we can write

V (a1, a2, a3) =

∫

PT

tr(A1 ∧ A2 ∧ g3) ∧ D3Z =

∫

E

tr (A1 ∧ A2 ∧ G3) .

We note that this space time representative is precisely what we would have obtained from
the space-time action (5).

This formula can now be evaluated on momentum eigenstates

A1 = eip1·xp1Aǫ1A′dxAA′

, A2 = eip2·xp2Aǫ2A′dxAA′

, G3 = eip3·xp̃3A′ p̃3B′d2xA′B′

,
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where pAA′

1 = pA
1 p̃A′

1 , p̃A′

1 ǫ1A′ = 1 etc.. We find, after some manipulations the standard result

V (a1, a2, a3) = δ4(p1 + p2 + p3)
〈p1 · p2〉4

〈p1 · p2〉〈p2 · p3〉〈p3 · p1〉

where 〈p1 · p2〉 = p1ApA
2 etc., the (degenerate) MHV formula for the − − + vertex. In

order to obtain this result, we need to use the fact for 3 complex null vectors, the equation
p1+p2+p3 = 0 implies that either all the self-dual, or all the anti-self-dual spinor constituents
of the momenta are proportional. That leads to relations that allow one to eliminate the
polarization spinors ǫ1 and ǫ2 leaving the desired formula.

The propagator can also be represented on space-time following the calculation in §5.
This gives the representation for the propagator as the two-point function

sAA′sBB′d2xA′B′

∧ d2yAB

(s · s)3
.

This is a non-standard expression for the photon propagator because it is appearing in
the field representation (i.e., on the 2-forms rather than the potential) and so it is in fact
the second derivative of the standard photon propagator. This is related to the fact that
the currents are also being represented as 2-forms, i.e., as potentials for their usual 3-form
representation. On momentum space this propagator becomes pA(A′pB′)B/p · p.

7 Conclusions

We see that the propagators and vertices are identical to those of the space-time Lagrangian
(1) and the computation of scattering amplitudes from these two theories should therefore be
the same at tree level. However, more work is required to test the equivalence or otherwise
at the level of loops. The generation of all amplitudes from trivalent vertices is suggestive of
the BCFW relations.

The Chern-Simons theory is clearly suggestive of a B-model twistor-string theory in
ambitwistor space in which a D7-brane is wrapped on AE (with ξ̄ = 0 = η̄); this would,
however, be a non-standard construction in string theory as in the B-model branes are
usually wrapped on holomorphic cycles. We intend to return to the construction of an
ambitwistor-string theory in a subsequent paper.

Clearly there is a good prospect of providing a firm basis to twistor diagram theory.
The propagator and vertices are clearly those of twistor diagrams, but there are a number
of differences as well. For example, in the twistor diagram approach both δ′′′(Z · W ) and
(Z ·W )−4 are represented by the latter, but distinguished by the choice of contour. A more
fundamental difference is that vertices have more twistor-functions ending on a twistor than
are usually allowed. This is perhaps the most basic expression of infrared divergences. There
is clearly much useful work to be done to make contact with the work of Hodges (2005) on
the twistor diagrams for gauge theory.
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