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de l’Ecole Normale Supérieure et l’Université Paris-VI,
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Abstract

We investigate the monodromy of the Lax connection for classical IIB
superstrings on AdS5×S5. For any solution of the equations of motion
we derive a spectral curve of degree 4 +4. The curve consists purely of
conserved quantities, all gauge degrees of freedom have been eliminated
in this form. The most relevant quantities of the solution, such as its
energy, can be expressed through certain holomorphic integrals on the
curve. This allows for a classification of finite gap solutions analogous
to the general solution of strings in flat space. The role of fermions
in the context of the algebraic curve is clarified. Finally, we derive
a set of integral equations which reformulates the algebraic curve as
a Riemann-Hilbert problem. They agree with the planar, one-loop
N = 4 supersymmetric gauge theory proving the complete agreement
of spectra in this approximation.
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1 Introduction and Overview

Strings in flat space have been solved a long time ago. The solution of the classical equa-
tions of motion is straight-forward and obtained by a Fourier transformation, or mode
decomposition, of the world sheet. The string is then represented by a collection of in-
dependent harmonic oscillators, one for each mode and orientation in target space. The
oscillators are merely coupled by the Virasoro and level-matching constraints. The con-
served, physical quantities of the string are the absolute values of oscillator amplitudes.
Quantization of this system essentially poses no problem. The harmonic oscillators are
excited in quanta and the amplitudes turn into integer-valued excitation numbers.

Maldacena’s conjecture [1] however brought about special attention on strings in
curved target spaces with ‘RR-flux’, in particular IIB superstrings on AdS5 ×S5. There,
a solution and quantization is much more involved due to the highly non-linear nature of
the string action [2]. A direct quantization of the world sheet theory is furthermore ob-
structed by conformal and kappa symmetry which require gauge fixing. This introduces
a number of additional terms and usually makes the problem intractable.

One path to quantization is related to the maximally supersymmetric plane-wave
background [3] and the correspondence to gauge theory [4]. In this background the
solution and quantization closely resembles its flat space counterpart [5]. The full AdS5×
S5 background may be regarded as a deformation of plane waves. Following this idea,
one can obtain a quantum string on AdS5 × S5 in a perturbation series around plane
waves [6]. This approach has yielded several important insights into the quantum nature
of the string, but there are drawbacks: The perturbative expansion is very involved, the
first order is feasible [7], but beyond there are no definite answers available yet. Even
if this problem might be overcome, still we would be limited to a certain region of the
parameter space of full AdS5 × S5 which is insensitive to global aspects.

Another approach to strings in curved space is to consider classical solutions, see
e.g. [8]. For these solutions with large spins one can show that quantum effects are sup-
pressed and already the classical solution yields a good approximation for the full energy.
Even more excitingly, Frolov and Tseytlin discovered that many of these spinning string
solutions have an expansion which is in qualitative agreement with the loop expansion
of gauge theory [9]. Their conjecture of a quantitative agreement has been confirmed
in several cases in [10, 11] and many more works since,1 see [13–16] for reviews of the
subject. Finding exact solutions is not trivial, the complexity of the functions increases
with the complexity of the solution. The functions that occur are of algebraic, elliptic
or hyperelliptic type and many of those which can be expressed using conventional func-
tions have been found. While in principle each and every solution can be found using
suitable (unconventional) functions, it is impossible to catalog infinitely many of them
in order to understand their generic structure.

Finding the energy spectrum of superstrings on AdS5 × S5 therefore appears a too
difficult problem to be solved explicitly. Instead one can ask a more moderate question:
How is the spectrum of string solutions organized? In other words, can we classify string

1Here, as well as in the case of near plane-wave strings there are discrepancies starting at three gauge
theory loops [6, 12]. This puzzle can also be reformulated as the question why it works at one and two
loops in the first place. We have little to add on this issue.
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solutions even though we cannot write them explicitly? Understanding the classification
at the classical level might be an essential step towards understanding the quantum
string. The classification was started in [17] for bosonic strings on R × S3 which is a
subspace of the full AdS5 × S5 background. It was shown that for each solution of the
equations of motion there exists a corresponding hyperelliptic curve. The key physical
data of the solution, such as the energy and Noether charges, were identified in the
algebraic curve.2

At this point one can turn the logic around and investigate the moduli space of
admissible curves, i.e. those curves which correspond to some classical solution. This
leads to a solution of the spectral problem in terms of algebraic curves, which is probably
as close to an explicit solution as it can be. However, one would have to ensure that all
relevant constraints on the structure of admissible curves have been correctly identified.
A survey of the moduli space of admissible curves suggests that this is indeed the case:
There turns out to be one continuous modulus per genus and each handle of the curve
can be interpreted as a particular string mode. This count matches with strings in flat
space, which has one amplitude per string oscillator. Although two distinct theories are
compared here, one can expect that the number of local degrees of freedom of the string
should be independent of the background. We furthermore believe that the (conserved)
moduli of a curve represent a complete set of action variables for the string. The moduli
space of admissible curves would thus represent half the phase space of the string model.

Another interesting option is to reformulate the problem of finding admissible curves
as a Riemann-Hilbert problem. This is achieved by representing the curve as a collection
of Riemann sheets connected by branch cuts. The branch cuts are represented by inte-
grals over contours and densities in the complex plane. The admissibility conditions turn
into integral equations on these contours and densities. This representation reveals an
underlying scattering problem and the branch cuts represent the fundamental particles.
The integral equations select equilibrium states of the scattering problem. This can be
compared to a direct Fourier transformation of the string: The Fourier transformation
transforms the equations of motion into equations among the different Fourier modes.
Conceptually, the resulting equations are very similar to the integral equations. The
main difference between the two approaches is that there are interactions between arbi-
trarily many Fourier modes due to the highly non-linear nature of the strings, while the
interactions for the integral equations are only pairwise! In some sense, the algebraic
curve can thus be interpreted as a clever mode decomposition specifically tailored for the
particular curved background.

The pairwise, i.e. factorized, nature of the scattering problem leads us to integrability.
Indeed, the algebraic curve was constructed using the Lax connection, a family of flat
connections on the two-dimensional string world sheet. For sigma models on group
manifolds and symmetric coset spaces, such as SU(2) = S3, this connection is well-
known [19] and related to integrability as well as an infinite set of conserved charges [20]
of the two-dimensional theory. Integrable structures were also found in the AdS/CFT

2This explains, among other things, why the classical energy, one of these charges, is typically
expressed through hyperelliptic functions. The various integration constants of the classical solution
turn into moduli of the algebraic curve which appear as parameters to the hyperelliptic functions. See
also [18] for a discussion of the moduli of some particular curves.

2



dual N = 4 gauge theory: The dual of the world-sheet Hamiltonian, the planar dilatation
operator (see [15] for a review), was shown to be integrable at leading loop order [21,22].
Moreover, there are indications that integrability is not broken by higher-loop effects [23].
In gauge theory, integrability enables one to construct a Bethe ansatz [24] to diagonalize
local operators, which are isomorphic to quantum spin chains. This leads to a set of
algebraic equations [21, 22, 12, 25] whose solutions are in one-to-one correspondence to
eigenstates of the dilatation operator. In the limit of states with a large number of
partons, which is at the heart of the spinning-strings correspondence, the discrete Bethe
equations turn into integral equations [26, 10]. These are very similar to the integral
equations from the string sigma model. In fact, it was shown that the higher-loop Bethe
equations in the su(2) sector [12,25] match with the equations from classical string theory
on R× S3 up to two gauge-theory loops [17]. This proves the equality of energy spectra
in this limit and sector. Alternatively, one can also derive an algebraic curve for gauge
theory and compare it to the one for the sigma model [17]. An altogether different
approach to showing the agreement of spectra uses coherent states [27].

The solution of the spectral problem in terms of algebraic curves has since been
extended to three other subsectors of the full superstring: Bosonic strings on AdS3 × S1

[28], on R × S5 [29] and on AdS5 × S1 [30]. Also some features of the assembly of full
AdS5 and full S5 are known [31]. In all previous analyses, however, fermions have been
excluded.3 While this is justified (for almost all practical purposes) at the classical level,
they are certainly required to give a consistent quantum theory. It is therefore essential
to include them, even at the classical level. This can indeed be done, even though it is
a classical setting.4

In the present article we shall derive the solution of the spectrum of IIB superstrings
on AdS5 × S5 in terms of algebraic curves. The starting point will be the family of
flat connections found by Bena, Polchinski and Roiban [34]. Using its open Wilson
loop around the closed-string world sheet, the so-called monodromy, we can derive an
algebraic curve. As was demonstrated in [34] the Lax connection exists prior to gauge
fixing. We therefore do not fix any gauge, neither of conformal nor of kappa symmetry,
in contrast to [17, 28, 29] and especially [31]. The emergent curve is neither a regular
algebraic curve, nor an algebraic supercurve, i.e. not a supermanifold. It almost splits
in two parts, but it is held together by the fermions. Each part has degree four and
corresponds to one of the S5 and AdS5 coset models. The bosonic degrees of freedom
give rise to square-root branch points and cuts connecting them. These appear only
within each set of four Riemann sheets. We shall show that, conversely, the fermions
give rise to poles. Poles come in pairs, one of them is on the S5-part of the curve, the
other on the AdS5-part while their residues are the same.5 Their position within the

3Within the Frolov-Tseytlin correspondence fermions have been treated in [32,33] using the coherent
state approach.

4Having fermions in classical equations is not a problem, but we run into difficulties when we try to
find explicit solutions, which would require the introduction of actual Grassmann numbers.

5The residues are products of two Grassmann-odd numbers. Therefore, they are Grassmann-even,
but not of zeroth degree, i.e. they cannot be represented by common numbers. This is why fermions
can be neglected for almost all practical purposes. The derivations are however simplified by ignoring
this fact.
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algebraic curve is determined by the bosonic background. The two parts of the curve
are furthermore linked by the Virasoro constraint: It relates a set of fixed poles between
the two parts of the curve. These poles are an important general characteristics of the
model and do not correspond to fermions.

The precise structure of the algebraic curve and its representation in the form of
integral equations constitute the key information from string theory for a comparison
with gauge theory [35, 22, 15, 30] via the Frolov-Tseytlin proposal. Using an integral
representation for the curve, we are able to show agreement of the spectra at leading
order in the effective coupling constant. A more detailed comparison will be performed
in the follow-up article [36].

The structure of this article is as follows: In Sec. 2 we will investigate the monodromy
of the Lax connection and derive an algebraic curve from it. The remainder of the section
is devoted to finding the analytic properties of the curve and relating them to data of
the associated string solution. Then we decouple from the underlying string solution in
Sec. 3 and consider the set of admissible curves. After counting the number of moduli,
we shall identify them with certain integrals on the curve. Their relationship to the
global charges is established. In the final Sec. 4 we shall represent the algebraic curve by
means of its branch cuts between the Riemann sheets. The resulting equations are closely
related to the equations one obtains from spin chains in the thermodynamic limit. We
show that they agree with one-loop gauge theory. We conclude and give an outlook in
Sec. 5. The appendices contain a review of supermatrices (App. A), the relation between
coset and vector models (App. B) and explicit but lengthy expressions related to the full
supersymmetric sigma model (App. D).

2 Supersymmetric Sigma Model

We start by investigating the AdS5 ×S5 supersymmetric sigma model on a closed string
worldsheet. First of all we present the sigma model in terms of its fields, currents and
constraints. Then we review the Lax connection and its monodromy and show that the
essential physical information (action variables) is described by an algebraic curve. The
remainder of this section is devoted to special properties of the curve and relating them
to physical quantities.

The AdS5 × S5 superspace can be represented as the coset space of the supergroup
PSU(2, 2|4) over Sp(1, 1)×Sp(2). Up to global issues, but preserving the algebraic struc-
ture, we can change the signature of the target spacetime. Here we will consider the coset
PSL(4|4, R)/Sp(4, R) × Sp(4, R). This choice is convenient as we can completely avoid
complex conjugation which may be somewhat confusing, especially in a supersymmetric
setting. See e.g. [37, 38] for an explicit treatment of the PSU(2, 2|4) coset model. The
global issues that we should keep in mind are whether the string can wind around the
manifold. For S5 this is certainly the case, while for AdS5 there should be no windings.
Note that the physical AdS5 is a universal cover and there cannot be windings around
the unfolded time circle. Likewise, the involved group manifolds are considered to be
universal coverings.
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2.1 The Coset Model

The Metsaev-Tseytlin string is a coset space sigma model. To represent the coset, we
consider a group element g of PSL(4|4, R) and two constant (4|4) × (4|4) matrices6

E1 =

(
E 0
0 0

)
, E2 =

(
0 0
0 E

)
, (2.1)

which break PSL(4|4, R) to Sp(4, R) × Sp(4, R). Here, E is an antisymmetric 4 × 4
matrix7

E =

(
0 +I

−I 0

)
, (2.2)

where each entry corresponds to a 2 × 2 block and I is the identity matrix. We shall
denote the pseudo-inverses of E1, E2 by

Ē1 =

(
E−1 0
0 0

)
, Ē2 =

(
0 0
0 E−1

)
. (2.3)

These are defined such that a product of Ea and Ēb is a projector to the even/odd
subspace if a = b or zero if a 6= b. Finally, let us introduce a grading matrix

η =

(
+I 0
0 −I

)
(2.4)

which will be useful at various places.
The breaking of PSL(4|4, R) to Sp(4, R)×Sp(4, R) is achieved as follows: The matrix

E1 is invariant under E1 7→ hE1h
ST for elements h of a subgroup Sp(4, R) × SL(4, R)

of PSL(4|4, R). Similarly, E2 7→ hE2h
ST is invariant under a SL(4, R) × Sp(4, R). The

combined map (E1, E2) 7→ (hE1h
ST, hE2h

ST) leaves (E1, E2) invariant precisely for h ∈
Sp(4, R)×Sp(4, R). Thus the element (gE1g

ST, gE2g
ST) with g ∈ PSL(4|4, R) parametrizes

the AdS5 × S5 superspace.8

We now introduce the supermatrix-valued field g(τ, σ) ∈ PSL(4|4, R) on the world-
sheet. It satisfies sdet g = 1 and we identify group elements which are related by an
abelian rescaling, g =̂ ξg.9 The field g is not necessarily strictly periodic but

g(τ, σ + 2π) = g(τ, σ) h(τ, σ). (2.5)

with h(τ, σ) an element of Sp(4, R) × Sp(4, R). We define the standard g-connection J
as

J = −g−1dg. (2.6)

6For a short review of the algebra of supermatrices, cf. App. A.
7In fact, any E = −ET with εαβγδE

αβEγδ 6= 0 would suffice and one could as well pick distinct
matrices E for E1 and E2.

8Note that E1 is an antisymmetric supermatrix, EST

1 = −ηE1, while E2 is symmetric, EST

2 = +ηE2.
Therefore also g(E1 ± E2)g

ST or g(E1 ± iE2)g
ST parametrize the coset as we can disentangle the contri-

butions from E1 and E2 by projecting to the symmetric and antisymmetric parts.
9For (4|4) × (4|4) supermatrices, sdet ξI = 1 for any number ξ.
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It is flat and supertraceless

dJ = J ∧ J and str J = 0 (2.7)

by means of the usual identities and sdet g = 1. The algebra psl(4|4, R) can be decom-
posed into four parts obeying a Z4-grading [2, 39, 40].10 The connection decomposes as
follows

J = H + Q1 + P + Q2. (2.8)

We use the constant supermatrices E1,2, Ē1,2 to project to the various components

H = 1
2
E1Ē1 J E1Ē1 − 1

2
E1 J ST Ē1 + 1

2
E2Ē2 J E2Ē2 − 1

2
E2 J ST Ē2,

Q1 = 1
2
E1Ē1 J E2Ē2 + 1

2
E1 J ST Ē2 + 1

2
E2Ē2 J E1Ē1 − 1

2
E2 J ST Ē1,

P = 1
2
E1Ē1 J E1Ē1 + 1

2
E1 J ST Ē1 + 1

2
E2Ē2 J E2Ē2 + 1

2
E2 J ST Ē2,

Q2 = 1
2
E1Ē1 J E2Ē2 − 1

2
E1 J ST Ē2 + 1

2
E2Ē2 J E1Ē1 + 1

2
E2 J ST Ē1. (2.9)

They satisfy the Z4-graded Bianchi identities in [34]

dH = H ∧ H + Q1 ∧ Q2 + P ∧ P + Q2 ∧ Q1,

dQ1 = H ∧ Q1 + Q1 ∧ H + P ∧ Q2 + Q2 ∧ P,

dP = H ∧ P + Q1 ∧ Q1 + P ∧ H + Q2 ∧ Q2,

dQ2 = H ∧ Q2 + Q1 ∧ P + P ∧ Q1 + Q2 ∧ H, (2.10)

and their supertraces vanish

str H = strQ1 = str P = str Q2 = 0. (2.11)

Note that str H = str Q1 = str Q2 = 0 is satisfied by means of the projections (2.9) while
str P = str J = 0 holds due to (2.7).

The action of the IIB superstring on AdS5×S5 given in [2] in terms of the connections
P, Q1,2 reads [40]

Sσ =

√
λ

2π

∫ (
1
2
str P ∧ ∗P − 1

2
str Q1 ∧ Q2 + Λ ∧ str P

)
. (2.12)

We have introduced the Lagrange multiplier Λ to enforce str P = 0. In fact, we cannot
remove the part proportional to the identity matrix because of the identity str I = 0.
The equations of motion read

0 = P ∧ Q2 − ∗P ∧ Q2 + Q2 ∧ P − Q2 ∧ ∗P,

d∗P = H ∧ ∗P + Q1 ∧ Q1 + ∗P ∧ H − Q2 ∧ Q2 + dΛ,

0 = P ∧ Q1 + ∗P ∧ Q1 + Q1 ∧ P + Q1 ∧ ∗P. (2.13)

The appearance of Λ in the equations of motion is related to the projective identification
g =̂ ξg. The equations of motion can also be written as the g-covariant conservation of
the global psl(4|4, R) symmetry current K

d∗K − J ∧ ∗K − ∗K ∧ J = 0, K = P + 1
2
∗Q1 − 1

2
∗Q2 − ∗Λ. (2.14)

10The Z4-grading is directly related to supertransposing, c.f. App. A.
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The above equations of motion follow after decomposition into the Z4-graded compo-
nents. The dependence of K on the unphysical Lagrange multiplier reflects the ambigu-
ity in the definition of the abelian part of K in psl(4|4, R). In the fixed frame,11 which is
related to the moving one by k = gKg−1, the equations for the current are even shorter

d∗k = 0. (2.15)

The global symmetry charges are consequently given by

s =

√
λ

2π

∮

γ

∗k =

√
λ

2π

∫ 2π

0

dσ kτ . (2.16)

These do not depend on the form of the path γ around the closed loop and are thus
conserved physical quantities. For later convenience, we rewrite s = g(0)Sg−1(0) in
terms of the moving-frame current K as follows

S =

√
λ

2π

∫ 2π

0

dσ g−1(0)g(σ)Kτ(σ)g−1(σ)g(0)

=

√
λ

2π

∫ 2π

0

dσ

(
P exp

∫ σ

0

dσ′Jσ(σ′)

)−1

Kτ (σ)

(
P exp

∫ σ

0

dσ′Jσ(σ′)

)
. (2.17)

Here, as for the remainder of the article, the path ordering symbol P puts the values of
σ in decreasing order from left to right.

In addition to the equation of motion, the Virasoro constraints following from vari-
ation of the world-sheet metric (which appears only within the dualization ∗) are given
by

str P 2
± = 0. (2.18)

Here we have introduced the light-cone coordinates

σ± = 1
2
(τ ± σ), ∂± = ∂τ ± ∂σ, P± = Pτ ± Pσ. (2.19)

2.2 Lax Connection and Monodromy

A family of flat connections a(κ) for the superstring on AdS5 × S5 was derived in [34].12

This was expressed in the fixed frame, which is related to moving one by j = gJg−1 and
similarly for H, Q1, P, Q2. The Lax connection is given by

a(κ) = α(κ) p + β(κ) (∗p − Λ) + γ(κ) (q1 + q2) + δ(κ) (q1 − q2) (2.20)

11We shall distinguish between a moving frame and a fixed frame. In the moving frame E is a constant
matrix and the fundamental field is g. The gauge connection is D = d−J . In the fixed frame the matrix
corresponding to E is gEgST. It is not constant but rather the fundamental field. The gauge connection
is trivial, D = d. See App. B for a comparison of both formalisms. We use uppercase and lowercase
letters for the moving and fixed frames, respectively.

12For complex values of κ, there is only one family of flat connections. The other family mentioned
in [34] is trivially obtained by replacing κ with iπ − κ.
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Ω(z)

γ

Figure 1: The monodromy Ω(z) is the open Wilson loop of the Lax connection A(z) around
the string.

with
α(κ) = −2 sinh2 κ, γ(κ) = 1 − cosh κ,

β(κ) = 2 sinh κ cosh κ, δ(κ) = sinh κ. (2.21)

We will employ a more convenient parametrization by setting z = exp κ. The coefficient
functions become

α(z) = 1 − 1
2
z2 − 1

2
z−2, γ(z) = 1 − 1

2
z − 1

2
z−1,

β(z) = 1
2
z2 − 1

2
z−2, δ(z) = 1

2
z − 1

2
z−1. (2.22)

We would now like to transform the connection to the moving frame using J = g−1jg
and compute

d − A(z) = g−1
(
d + a(z)

)
g = d − J + g−1a(z)g (2.23)

= d − H + (α − 1) P + β (∗P − Λ) + (γ − 1) (Q1 + Q2) + δ (Q1 − Q2),

where the Lax connection reads

A(z) = H +
(

1
2
z2 + 1

2
z−2
)
P +

(
−1

2
z2 + 1

2
z−2
)
(∗P − Λ) + z−1Q1 + z Q2. (2.24)

As was shown in [34], it satisfies the flatness condition

(
d − A(z)

)2
= 0 (2.25)

by means of the equations of motion. It is also traceless for obvious reasons, str A(z) = 0.
As emphasized in [17,29], an important object for the solution of the spectral problem

is the open Wilson loop of the Lax connection around the closed string. It is given by

Ω0(z) = P exp

∫ 2π

0

dσ Aσ(z) ≃ P exp

∮
A(z). (2.26)

The monodromy which is defined as13

Ω(z) = Ω−1
0 (1) Ω0(z) (2.27)

13For z = 1 the Lax connection A(z) = J is the gauge connection. The additional factor Ω−1
0 (1) =

g(0)−1g(2π) = h(0) therefore transforms the monodromy back to the tangent space at σ = 0.
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is independent of the path γ around the closed string; it merely depends on the point
γ(2π) = γ(0) where the path is cut open. More explicitly, a shift of γ(0) leads to a simi-
larity transformation (≃), see e.g. [29]. Therefore, the eigenvalues of Ω(z) are invariant,
physical quantities. Note that we did not specify any particular gauge of conformal or
kappa symmetry. Under kappa symmetry the Lax connection transforms by conjuga-
tion [41] and consequently leaves the eigenvalues invariant as well. For definiteness we
define Ω(z) through the path σ ∈ [0, 2π] at τ = 0. Also note that str A(z) = 0 leads to
sdet Ω(z) = 1.

In the Hamiltonian formulation, the eigenvalues of the monodromy represent action
variables of the sigma model.14 We have a one-parameter family of them and it is not
inconceivable that they form a complete set. So we might have a sufficient amount of
information to fully characterize the class of solution. The time-dependent angle variables
and all gauge degrees of freedom are completely projected out in the eigenvalues of Ω(z).
This is a very good starting point for a quantum theory: For quantum eigenstates we
can measure all the action variables exactly but information of the angle variables is
obscured by the uncertainty principle.

2.3 The Algebraic Curve

The physical information of the monodromy matrix is its conjugation class. Let u(z)
diagonalize Ω(z) as follows

u(z)Ω(z)u−1(z) = diag
{
eip̃1(z), eip̃2(z), eip̃3(z), eip̃4(z)

∣∣∣∣eip̂1(z), eip̂2(z), eip̂3(z), eip̂4(z)
}
. (2.28)

Note that the eigenvalues eip̃k and eip̂l corresponding to the two gradings are distinguish-
able, they cannot be interchanged by a (bosonic) similarity transformation. We can
associate p̃k to S5 while p̂k corresponds to AdS5. In contrast, we may freely interchange
eigenvalues within each set of four. Unimodularity, sdet Ω(z) = 1, translates to the
condition

p̃1 + p̃2 + p̃3 + p̃4 − p̂1 − p̂2 − p̂3 − p̂4 ∈ 2πZ. (2.29)

The monodromy (2.27) depends analytically on the spectral parameter z by definition
except at the singular points z = 0 and z = ∞. This however does not imply that also
the eigenvalues {eip̃k ||eip̂k} enjoy the same property.

Let us first consider a point z̃a where two eigenvalues eip̃k , eip̃l corresponding to the
S5-part of the sigma model degenerate. The restriction of Ω(z) to the subspace of the
two corresponding eigenvalues then takes the general form

Γ =

(
a b
c d

)
(2.30)

with some coefficients a, b, c, d depending analytically on z. Its eigenvalues are given by
the general formula

γ1,2 =
1

2

(
a + d ±

√
(a − d)2 + 4bc

)
. (2.31)

14See [38] for an investigation of the Poisson brackets of the monodromy.
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At z = z̃a the combination f = (γ1 − γ2)
2 = (a − d)2 + 4bc = (Tr Γ )2 − 2 TrΓ 2 under

the square root vanishes, f(z̃a) = 0. In the generic case, one can expect f ′(z̃a) 6= 0. This
implies the well-known fact that crossing of eigenvalues usually gives rise to a square-root
singularity:

eip̃k,l(z) = eip̃k(z̃a)
(
1 ± α̃a

√
z − z̃a + O(z − z̃a)

)
. (2.32)

Similarly, coincident AdS5-eigenvalues eip̂k and eip̂l at ẑa lead to square-root singularities

eip̂k,l(z) = eip̂k(ẑa)
(
1 ± α̂a

√
z − ẑa + O(z − ẑa)

)
. (2.33)

The behavior around a point z∗a where eigenvalues of opposite gradings, eip̃k and eip̂l,
coincide is quite different: Consider the submatrix of Ω(z) on the subspace of the two
associated eigenvectors

Γ =

(
a b
c d

)
(2.34)

The eigenvalues of this supermatrix Γ are given by

γ1 =
bc

d − a
+ a , γ2 =

bc

d − a
+ d , (2.35)

where again a, b, c, d are given by analytic functions in z. At z = z∗a, the combination
f = a − d = γ1 − γ2 = str Γ in the denominator is zero by definition, f(z∗a) = 0.
Generically, we cannot however expect that also the numerator bc vanishes and therefore
we find a pole singularity at z∗a

eip̃k(z) = ei/̃pk(z∗a)

(
α∗

a

z − z∗a
+ 1 + O(z − z∗a)

)
= eip̂l(z). (2.36)

Note that the residue α∗
a as well as the regular part ei/p(z∗a) of eip(z) at z = z∗a are the

same for both eigenvalues.15 We thus learn that the set of eigenvalues of Ω(z) depends
analytically on z except at a set of points {0,∞, z̃a, ẑa, z

∗
a}. Let us assume that there

are only finitely many singularities of this kind. The cases of an infinite number of
singularities can hopefully be viewed as limits of this finite setting. A unique labelling of
eigenvalues cannot be achieved globally, because a full circle around one of the square-
root singularities z̃a, ẑa will result in an interchange of the two eigenvalues associated to
the singularity. Therefore we need to introduce several branch cuts C̃a and Ĉa in eip̃k(z)

and eip̂k(z), respectively, which connect the square-root singularities. The functions p̃k(z)
and p̂k(z) are therefore analytic except at {0,∞, C̃a, Ĉa, z

∗
a}. Alternatively, we could view

eip̃(z) and eip̂(z) as one function on suitable four-fold coverings M̃ and M̂ of C̄. In that
case, the functions eip̃(z) and eip̂(z) are analytic except at {0,∞, z̃a, ẑa, z

∗
a}. At z∗a both

functions eip̃(z) and eip̂(z) have poles with equal residues and regular parts. Finally, at 0
and ∞ there are essential singularities of the type eiα0/z2

, eiα∞z2

.

15It might be worthwhile to point out that α∗
a = −bc is the product of two Grassmann-odd quantities

and thus, in principle, cannot be an ordinary number. It satisfies a nilpotency condition (α∗
a)2 = 0

which, however, does not quite make it trivial. When quantizing the string, these factors give rise to
fermionic excitations due to quantum ~ ∼ 1/L effects. This effect can already be seen in the one-loop
spin chain for the N = 4 gauge theory [22] where there are no nilpotent objects.
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Except for the last two singularities, the functions eip̂(z), eip̃(z) would satisfy all re-
quirements for algebraic curves. In order to turn the essential singularities at {0,∞}
into regular singularities, we take the logarithmic derivative of the eigenvalues. Let us
define the matrix Y (z) according to

u(z)Y (z)u−1(z) = −iz
∂

∂z
log
(
u(z)Ω(z)u−1(z)

)
, (2.37)

where u(z) diagonalizes Ω(z). In other words, the eigenvalues of Y (z) are the logarithmic
derivatives of the eigenvalues of Ω(z). The corresponding eigenvectors are the same. We
can now reduce Y (z) to the following expression

Y (z) = Ω−1(z)
(
−izΩ′(z) + [U(z), Ω(z)]

)
, U(z) = −izu−1(z)u′(z). (2.38)

As Ω(z) is non-zero and its only singularities are at {0,∞}, any further singularities
can only originate from U(z). The diagonalization matrix u(z) has square roots and
branch cuts. It appears that all the branch points of u(z) are turned into single poles
in U(z).16 Consequently, U(z) has poles at {z̃a, ẑa, z

∗
a}, but all the branch cuts are

removed. Therefore Y (z) is single-valued and analytic on the complex plane except at
the singularities C̄\{0,∞, z̃a, ẑa, z

∗
a}.

Now we can read off the eigenvalues ỹ(z), ŷ(z) of Y (z) from its characteristic function
F (y, z)

F (ỹ(z), z) = 0, F (ŷ(z), z) = ∞ (2.39)

with

F (y, z) =
F̃4(z)

F̂4(z)
sdet

(
y − Y (z)

)
=

F̃ (y, z)

F̂ (y, z)
. (2.40)

We have included polynomial prefactors F̃4(z), F̂4(z) in the definition of F = F̃ /F̂ which
clearly do not change the algebraic curve. The purpose of the prefactors is to remove
the poles originating from U(z). The roots of these prefactors are thus given by the
singularities {z̃a, z

∗
a} or {ẑa, z

∗
a}, respectively. They enable us to write both F̃ and F̂ as

polynomials, not only in y (obvious), but also in z.
As Y (z) has only pole-type singularities at {0,∞, z̃a, ẑa, z

∗
a}, the above equation de-

fines two algebraic curves ỹ(z) and ŷ(z) on the Riemann surfaces M̃ and M̂, respectively.
We can even unite the two curves into one curve y(z) = {ŷ(z)||ỹ(z)} on M = M̃ ∪ M̂.
At the points {z̃a}, {ẑa}, the functions ỹ(z), ŷ(z) have inverse square-root singularities.
At {z∗a} both functions ỹ(z), ŷ(z) have double poles with equal coefficients. Similarly, at
{0,∞}, there are singularities of the type −2α0/z

2, 2α∞z2. Finally, there are no single
poles anywhere, because they would lead to a singular matrix Ω, which cannot happen.

2.4 The Central Element

Consider the local transformation

g(τ, σ) 7→ ξ(τ, σ) g(τ, σ) (2.41)
16This may require a special matrix u(z). The point is that one can redefine u(z) 7→ a(z)u(z) with

any diagonal matrix a(z). This is a possible source of non-analyticity in U(z), which however drops out
in [U(z), Ω(z)].
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with ξ a number-valued field which is nowhere zero. Here we would like to demonstrate
that this transformation does not have any physical effect. First of all, it changes the
current J by J 7→ J − ξ−1dξ, but note that str J = 0 remains true due to str I = 0. The
transformation can now be easily seen to affect only the P -component of J

P 7→ P − ξ−1dξ. (2.42)

In the equations of motion (2.13) the variation drops out when the Lagrange multiplier
shifts accordingly

Λ 7→ Λ − ξ−1∗dξ − i dζ − iυ dσ. (2.43)

The additional transformation parameters are the field ζ(τ, σ) and the constant υ. We
cannot include υ in ζ as ζ → ζ + υ σ as ζ would not be periodic. The action is also
invariant except for the term proportional to υ. This actually leads to a change of the
global charges (2.17)

S 7→ S −
√

λ

2π

∮
dζ − υ

√
λ

2π

∮
dσ = S −

√
λυ. (2.44)

This change of the central element of S is unphysical because the global symmetry is
merely PSU(2, 2|4), not SU(2, 2|4).

The family of flat connections changes up to a central gauge transformation

A(z) 7→ A(z) − (1
2
z2 + 1

2
z−2) ξ−1dξ − (1

2
z2 − 1

2
z−2)(i dζ + iυ dσ). (2.45)

As this is an abelian shift, it completely factorizes from the monodromy and we get

Ω(z) 7→ Ω(z) exp

∫ 2π

0

dσ
(
(1 − 1

2
z2 − 1

2
z−2) ξ−1∂σξ − (1

2
z2 − 1

2
z−2)(i∂σζ + iυ)

)
. (2.46)

The first term measures the winding number of ξ around 0 when going once around the
string. This winding affects both the AdS5 and S5 parts of g. However, in the physical
setting, the background is a universal cover and windings around the time-circle of AdS5

are not permitted. Therefore the term involving ξ does not contribute. Also the term
involving ζ vanishes because ζ is periodic. We end up with

Ω(z) 7→ Ω(z) exp
(
−iπυ(z2 − z−2)

)
. (2.47)

The factor is abelian and does not change the eigenvectors. We thus find

Y (z) 7→ Y (z) − 2πυ(z2 + z−2). (2.48)

This means that we can shift the curve y(z) by a term proportional to (z2 + z−2) as long
as the factor of proportionality is the same for all sheets.
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2.5 Symmetry

Let us introduce the (antisymmetric) supermatrix

C = E1 − iE2. (2.49)

Then there is another useful way of expressing (2.9)

H = 1
4
J − 1

4
C J ST C−1 + 1

4
η J η − 1

4
η C J ST C−1 η,

Q1 = 1
4
J − i

4
C J ST C−1 − 1

4
η J η + i

4
η C J ST C−1 η,

P = 1
4
J + 1

4
C J ST C−1 + 1

4
η J η + 1

4
η C J ST C−1 η,

Q2 = 1
4
J + i

4
C J ST C−1 − 1

4
η J η − i

4
η C J ST C−1 η, (2.50)

where η is the grading matrix (2.4). This form reveals that a conjugation of the four
components H, Q1, P, Q2 of J with C is equivalent to their supertranspose up to a sign
determined by their grading under Z4

C−1 H C = −HST,

C−1 Q1 C = −iQST

1 ,

C−1 P C = +P ST,

C−1 Q2 C = +iQST

2 . (2.51)

When we apply this conjugation to the flat connections we obtain

C−1A(z)C = −HST +
(

1
2
z2 + 1

2
z−2
)
P ST +

(
−1

2
z2 + 1

2
z−2
)
∗P ST − iz−1QST

1 + iz QST

2

= −AST(−iz). (2.52)

This, in turn, implies a symmetry relation for the monodromy C−1Ω(z) C = Ω−ST(−iz).
The inverse is due to the overall sign in (2.52) and the transpose puts the Wilson loop
in the original path ordering. In other words17

Ω(iz) = C Ω−ST(z) C−1 (2.53)

is related to Ω(z) by conjugation, inversion and supertranspose. This translates to the
following symmetry of Y (z) and U(z)

Y (iz) = −C Y ST(z) C−1, U(iz) = −C U ST(z) C−1. (2.54)

In particular, the characteristic function has the symmetry

F (y, iz) =
F̃4(iz)

F̂4(iz)
sdet

(
y − Y (iz)

)
=

F̂4(z)

F̃4(z)
sdet

(
y + Y (z)

)
= F (−y, z). (2.55)

It therefore depends analytically only on the combinations z4, yz2, y2. In other words,
y(iz) = −y(z) and consequently p(iz) = −p(z) + 2πZ with some permutation of the
sheets.

17The contribution from Ω−1
0 (1) = h(0) can be seen to cancel, because h ∈ Sp(4, R) × Sp(4, R).
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To determine the permutation, let us consider the action on the diagonalized matrix

Ydiag(iz) = −Cdiag(z)Y ST

diag(z) C−1
diag(z) with Cdiag(z) = u(iz) C uST(z). (2.56)

As both Ydiag(iz) and Y ST

diag(iz) = Ydiag(iz) are diagonal, Cdiag(z) must be a permutation
matrix and thus constant (up to branch cuts). In particular, we should investigate the
fixed points of z 7→ iz; these are the singular points {0,∞}. At these points, Cdiag(z) as
defined in (2.56) must approach an antisymmetric matrix related to C. As it is constant,
it must always be an antisymmetric permutation matrix which acts non-trivially with
period 2. We therefore find that the eigenvalues obey the symmetry

ỹk(iz) = −ỹk′(z), ŷk(iz) = −ŷk′(z) (2.57)

where we are free to choose the following permutation of sheets

k′ = (2, 1, 4, 3) for k = (1, 2, 3, 4). (2.58)

For the quasi-momentum we find

p̃k(iz) = 2πmεk − p̃k′(z), p̂k(iz) = −p̂k′(z). (2.59)

Here we have introduced

εk = (+1, +1,−1,−1) for k = (1, 2, 3, 4). (2.60)

The constant shift 2πm in p̃k(iz) is related to winding around S5. It must be absent for
the AdS5 counterpart p̂k(iz) because there cannot be windings in the time direction.

Finally, we see that y must depend analytically on z2. We can thus introduce the
variable x defined by

x =
1 + z2

1 − z2
, z2 =

x − 1

x + 1
, (2.61)

which is precisely the variable commonly used for bosonic sigma models as in [17, 29].
The points associated to local and global charges, discussed in the following subsections,
and the symmetry are related as follows, see also Fig. 2

x = ∞ ⇔ z = ±1,

x = 0 ⇔ z = ±i,

x = +1 ⇔ z = 0,

x = −1 ⇔ z = ∞,

x 7→ 1/x ⇔ z 7→ iz. (2.62)

Note the relation of differentials

dx

1 − 1/x2
=

dz

z
= dκ , (2.63)

where κ = log z is the spectral parameter used in [34].
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z = 0
x = +1

local−
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x = −1

x = −1
multi-local

z = +1
x = ∞

multi-local

z = −1
x = ∞

multi-local

z = +i
x = 0

multi-local

z = −i
x = 0

Z4

Figure 2: Special points of the quasi-momenta. The expansion around z = 0,∞ yields one
sequence of local charges each, see Sec. 2.6. At z = ±1,±i one finds the Noether charges,
discussed in Sec. 2.8, and multi-local charges. All other points are related to non-local charges.

2.6 Local Charges

At the points z = 0,∞ the expansion of the Lax connection is singular

A(ǫ±1) = 1
2
ǫ−2(P ± ∗P ∓ Λ) + ǫ−1Q1,2 + H + ǫ Q2,1 + 1

2
ǫ2(P ∓ ∗P ± Λ). (2.64)

The expansion of the quasi-momentum p(z) at these points is thus related to local
charges. As was shown in, e.g., [29], in the absence of the fermionic contributions Q1,2,
the leading coefficient of p(z) in ǫ is directly related to eigenvalues of the leading contri-
bution to Aσ. Let us repeat the argument for the point z = 0. Consider the transformed
connection Ā(z) in the σ-direction given by

∂σ − Ā(z) = T (z)
(
∂σ − Aσ(z)

)
T−1(z). (2.65)

Here T (z) and A(z) are given by their expansion in z

T (z) =

∞∑

r=0

zrTr, Ā(z) =

∞∑

r=−2

zrĀr. (2.66)

We demand that T0 diagonalizes the leading term

Ā−2 = 1
2
T0P+T−1

0 + 1
2
Λσ = diag(α̃1, α̃2, α̃3, α̃4||α̂1, α̂2, α̂3, α̂4). (2.67)

Since P satisfies CP STC−1 = P , c.f. (2.51), its eigenvalues must be doubly degenerate,
α̃1 = α̃2, α̃3 = α̃4, α̂1 = α̂2, α̂3 = α̂4. Furthermore, P+ satisfies the Virasoro constraint
str P 2

+ = 0. This requires α̃1 = α̂1, α̃3 = α̂3. The abelian shift by Λσ is compatible with
this construction and we find [31]

Ā−2 = diag(α, α, β, β||α, α, β, β) =

(
αI 0
0 βI

)
. (2.68)
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Here we have introduced a (2|2) × (2|2) block decomposition of the (4|4) × (4|4) super-
matrix, i.e. each block is a supermatrix. As the eigenvalues α and β are (generically)
distinct, we can use the Tr(z) to bring Ār−2(z) to a block-diagonal form

Ār =

(
ar 0
0 br

)
or Ā(z) =

(
a(z) 0
0 b(z)

)
. (2.69)

When this is done order by order in perturbation theory, the resulting ar and br are
local combinations of the fields. However, the diagonalization of the Lax connection is
not yet complete and a complete diagonalization will lead non-local results. Still we
can obtain local charges: Although the open Wilson loop Ω is in general non-local, its
superdeterminant is the exponential of a local charge. Here sdet Ω = 1 is trivial, but we
can consider only one block of T (2π)ΩT (0)−1

ω(z) =

(
P exp

∫ 2π

0

a(1)

)−1(
P exp

∫ 2π

0

a(z)

)
. (2.70)

Then sdet ω(z) = exp iq(z) with

q(z) = −i

∫ 2π

0

dσ
(
str a(z) − str a(1)

)
. (2.71)

The expression for the other block involving b(z) is in fact equivalent due to str a+str b =
str Ā = 0. The expansion of q(z) into qr gives a sequence of local charges. The term
q−2 vanishes because a−2 is proportional to the identity. We can also perform a similar
construction around z = ∞ leading to similar charges and thus we have found two infinite
sequences of local charges. Let us express q(z) through the quasi-momentum p(z). As
exp iq is the superdeterminant of the block ω of T (2π)ΩT (0)−1 we can also write q(z) as
a sum over a half of the quasi-momenta

q(z) = p̃1(z) + p̃2(z) − p̂1(z) − p̂2(z). (2.72)

Using (2.60) we write the generator of local charges in the concise form

q(z) =

4∑

k=1

εk

(
1
2
p̃k(z) − 1

2
p̂k(z)

)
. (2.73)

Expanded around z = 0,∞ it yields the conserved local charges. In App. C we will
construct the first of these charges. Note that besides the local charges there is a larger
set of conserved non-local charges.

2.7 Singularities

We would like to understand the singular behavior of the quasi-momentum p(z) at z = 0
better. In the bosonic case we would be finished after the semi-diagonalization of the
previous section because all singular terms have been diagonalized and can be integrated
up. In the supersymmetric case, the remaining singular term a−1 is not diagonal and
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might lead to further singularities at z = 0. Here we will show that this does not
happen. The difficulty of the proof is that any attempt to diagonalize further would lead
to non-local terms.

We shall start with one block a(z) of the semi-diagonalized connection Ā(z). Let us
investigate the logarithm of the monodromy ω(z) and expand near z = 0 18

log ω(z) =

∫ 2π

0

dσ a(σ, z) +

∫ 2π

0

dσ

∫ σ

0

dσ′ 1
2

[
a(σ, z), a(σ′, z)

]
+ . . . (2.74)

The further terms involve nested commutators of a(z) at various points σ. The term
a−2 = αI is abelian and thus contributes only to the first term. This is not necessarily
the most singular term, as a−1 may appear many times within the nested commutators.
To resolve this problem we note that the full Lax connection obeys the Z4-symmetry
relation (2.51). This reduces to a similar relation for the block a(z)

c aST(z) c−1 = −a(iz) or c aST

r c−1 = i2+rar. (2.75)

where c = e1 − ie2 with e1,2 as in (2.1), but with e being a 2 × 2 instead of a 4 × 4
antisymmetric matrix. This means that ar has Z4-grading r. Note that the grading
is obeyed by commutators, i.e. when x and y have gradings r and s, respectively, the
commutator [x, y] has grading r + s. Now consider two (2|2) × (2|2) supermatrices
x, y of grading −1. Then it can be shown (explicitly) that their commutator [x, y] is
proportional to the identity matrix I. It therefore drops out of any further commutators
and nested commutators can never produce terms of grading less than −2. Furthermore,
all terms of grading −2 are proportional to the identity. The grading coincides with the
power of z and we find

log ω(z) = d−2z
−2I + d−1z

−1 + O(z0) (2.76)

with d−2 a number and d−1 a matrix of grading −1. To finally diagonalize log ω(z) we first
use a matrix exp(t−1z

−1) which, using the Baker-Campbell-Hausdorff identity and for
the same reasons as above, removes the term d−1 without lifting the degeneracy of double
poles or creating even higher poles. Afterwards ω(z) can be diagonalized perturbatively.
Of course, all of the above holds true for the other block. We assemble the two blocks
and find for the quasi-momentum

p̃k(z) ∼ p̂k(z) ∼ (α0 + εkβ0) z−2 + O(z−1) (2.77)

with some coefficients α0, β0 not directly related to α, β. We have thus proved that
the structure of residues found in [31] is not affected by the fermions. Note that this
distribution on the pk is compatible with the permutation of sheets in Sec. 2.5. Similarly,
at z = ∞ the expansion of the quasi-momenta is given by

p̃k(z) ∼ p̂k(z) ∼ (α∞ + εkβ∞) z2 + O(z). (2.78)

18For convenience we omit contributions from the second term in ω; they do not change the principal
result.
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2.8 Global Charges

At z = 1 the expansion of the Lax connection

A(1 + ǫ) = J − 2ǫ ∗K + O(ǫ2) (2.79)

is related to the psu(2, 2|4) Noether current. The expansion of the monodromy yields

Ω(1 + ǫ) = I − 2ǫ

∫ 2π

0

dσ

(
P exp

∫ σ

0

dσ′Jσ(σ′)

)−1

Kτ (σ)

(
P exp

∫ σ

0

dσ′Jσ(σ′)

)
+O(ǫ2)

(2.80)
which equals

Ω(1 + ǫ) = I − ǫ
4π S√

λ
+ O(ǫ2) (2.81)

by means of (2.17). Not only z = +1, but also z = −1 and z = ±i are related to the
global charges, as can be seen from the symmetry discussed in Sec. 2.5. The higher orders
in the expansion yield multi-local charges. These are the Yangian generators discussed
in [34, 37, 42, 38].

The expansion of the quasi-momenta p̃k(z) associated to S5 at z = 1 is [29]

p̃1(1 + ǫ) = −ǫ
4π√

λ

(
+3

4
r̃1 + 1

2
r̃2 + 1

4
r̃3 + 1

4
r∗
)

+ . . . ,

p̃2(1 + ǫ) = −ǫ
4π√

λ

(
−1

4
r̃1 + 1

2
r̃2 + 1

4
r̃3 + 1

4
r∗
)

+ . . . ,

p̃3(1 + ǫ) = −ǫ
4π√

λ

(
−1

4
r̃1 − 1

2
r̃2 + 1

4
r̃3 + 1

4
r∗
)

+ . . . ,

p̃4(1 + ǫ) = −ǫ
4π√

λ

(
−1

4
r̃1 − 1

2
r̃2 − 3

4
r̃3 + 1

4
r∗
)

+ . . . . (2.82)

Here, [r̃1, r̃2, r̃3] are the the Dynkin labels of SU(4) related to the spins of SO(6) by
r̃1 = J2 − J3, r̃2 = J1 − J2, r̃3 = J2 + J3. The label r∗ is an unphysical label related to
the U(1) hypercharge. It transforms under the transformation described in Sec. 2.4 as
r∗ 7→ r∗ + υ

√
λ . Similarly, the expansion for p̂k(z) associated to AdS5 reads [31]

p̂1(1 + ǫ) = ǫ
4π√

λ

(
+3

4
r̂1 + 1

2
r̂2 + 1

4
r̂3 − 1

4
r∗
)

+ . . . ,

p̂2(1 + ǫ) = ǫ
4π√

λ

(
−1

4
r̂1 + 1

2
r̂2 + 1

4
r̂3 − 1

4
r∗
)

+ . . . ,

p̂3(1 + ǫ) = ǫ
4π√

λ

(
−1

4
r̂1 − 1

2
r̂2 + 1

4
r̂3 − 1

4
r∗
)

+ . . . ,

p̂4(1 + ǫ) = ǫ
4π√

λ

(
−1

4
r̂1 − 1

2
r̂2 − 3

4
r̂3 − 1

4
r∗
)

+ . . . . (2.83)

The Dynkin labels [r̂1, r̂2, r̂3] of SU(2, 2) are related to the spins of SO(2, 4) by r̂1 =
S1 − S2, r̂2 = −E − S1, r̂3 = S1 + S2.
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2.9 Bosonic AdS5 × S5, R × S5 and AdS5 × S1 Sectors

The restriction to the classical bosonic string on AdS5×S5 [31], R×S5 [29] and AdS5×S1

[30] is straight-forward: First of all we remove all possible fermionic poles. This implies
K∗ = 0 but we can also set r∗ = B = 0 and obtain the bosonic string on AdS5 × S5.
Then the expansion at z = 1 (2.82,2.83) as well as the structure of poles at z = 0,∞,
c.f. Sec. 2.7, agrees with [31] under the change of spectral parameter (2.61).

In the next step we either reduce AdS5 to R or S5 to S1. The isometry groups of
both factors R and S1 are abelian. For the monodromy corresponding to this factor we
can therefore remove the path ordering

Ω(z) =

(
P exp

∮
A(1)

)−1(
P exp

∮
A(z)

)
= exp

∮ (
A(z) − A(1)

)
, (2.84)

We now substitute A(z) from (2.24) with H = Q1 = Q2 = 0, P = −g−1dg and solve
Ω(z) = eip(z) for the quasi-momentum

p(z) = i(1 − 1
2
z2 + 1

2
z−2)

∮
g−1dg − i(−1

2
z2 + 1

2
z−2)

∮
g−1∗dg. (2.85)

The first integral represents the winding number m, it must vanish for R and can be
non-trivial for S1. The second integral represents the global charge, it is proportional to
the energy E for R and to the spin J for S1. By comparing to (2.83) we find that in the
case of R × S5 the full quasi-momentum for AdS5 is given by

p̂k(z) = εk
π E√

λ

(
−1

2
z2 + 1

2
z−2
)
. (2.86)

When the residues at z = 0,∞ are matched between p̃k and p̂k we find perfect agreement
with [29]. Equivalently in the case of AdS5 × S1 the full quasi-momentum for S5 is
obtained by comparing to (2.82)19

p̃k(z) = εk
π J√

λ

(
−1

2
z2 + 1

2
z−2
)

+ εkπm
(
1 − 1

2
z2 − 1

2
z−2
)
. (2.87)

Again, after matching the residues, this is in agreement with [30].

3 Moduli of the Curve

In this section we investigate the moduli space of admissible curves. Admissible curves
are algebraic curves which satisfy all the properties derived in the previous section and
which can thus arise from a classical string configuration on AdS5×S5. For a fixed degree
of complexity of the solution, which manifests as the genus of the curve, we count the
number of degrees of freedom for admissible curves. Although it is not obvious that all
admissible curves indeed represent string solutions (in other words that we have identified

19The integral of g−1dg yields odd multiples of iπ when g(2π) = −g(0), which is an allowed case.
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p̂4

1/Ĉ1Ĉ1

p̂3

−1 +1
p̃4

p̃3

1/Ĉ2 Ĉ2C̃1 1/C̃1x∗
1 1/x∗

1

p̃2

p̃1

−1 +1 1/x∗
2

x∗
2

p̂2

p̂1

Figure 3: Some configuration of cuts and poles for the sigma model. Cuts C̃a between the sheets
p̃k correspond to S5 excitations and likewise cuts Ĉa between the sheets p̂k correspond to AdS5

excitations. Poles x∗
a on sheets p̃k and p̂l correspond to fermionic excitations. The dashed line

in the middle is related to physical excitations, cuts and poles which cross it contribute to the
total momentum, energy shift and local charges.

all relevant properties of admissible curves) we see that this number agrees with strings in
flat space. We take this as evidence that our classification of string solutions in terms of
admissible curves is complete. We finally identify the discrete parameters and continuous
moduli with certain cycles on the curve and interpret them. For the comparison to gauge
theory we investigate the Frolov-Tseytlin limit of the algebraic curve corresponding to a
loop expansion in gauge theory.

3.1 Properties

Let us collect the analytic properties of the quasi-momentum

p(x) =
{
p̃1(x), p̃2(x), p̃3(x), p̃4(x)

∣∣∣∣p̂1(x), p̂2(x), p̂3(x), p̂4(x)
}
, (3.1)

see Fig. 3 for an illustration. All sheet functions p̃k(x) and p̂l(x) are analytic almost
everywhere. The singularities are as follows:

• At x = ±1 there are single poles, c.f. Sec. 2.6. The four sheets p̃1,2(x), p̂1,2(x) all have
equal residues; the same holds for the remaining four sheets p̃3,4(x), p̂3,4(x).

• Bosonic degrees of freedom are represented by branch cuts {C̃a}, a = 1, . . . , 2Ã and
{Ĉa}, a = 1, . . . , 2Â. The cut C̃a connects the sheets k̃a and l̃a of p̃′(x). Equivalently,
Ĉa connects the sheets k̂a and l̂a of p̂′(x). At both ends of the branch cut, x̃±

a or x̂±
a ,

there is a square-root singularity on both sheets.

• Fermionic degrees of freedom are represented by poles at {x∗
a}, a = 1, . . . , 2A∗. The

pole x∗
a exists on the sheets k∗

a of p̃(x) and l∗a of p̂(x) with equal residue.
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Further properties are:

• For definiteness, we assume the quasi-momentum to approach zero at x = ∞ on all
sheets, c.f. Sec. 2.8

p̃(x) = O(1/x), p̂(x) = O(1/x). (3.2)

• The quasi-momentum obeys the symmetry x 7→ 1/x, see Sec. 2.5, as follows

p̃k(1/x) = −p̃k′(x) + 2πmεk, p̂k(1/x) = −p̂k′(x). (3.3)

We use the permutation k′ of k and a sign εk for each sheet k = (1, 2, 3, 4) as defined
in (2.58,2.60)

k′ = (2, 1, 4, 3), εk = (+1, +1,−1,−1). (3.4)

The branch cuts and poles must respect the symmetry. We therefore consider the
cut C̃Ã+a = 1/C̃a to be the image of C̃a. The independent cuts are thus labelled by

a = 1, . . . , Ã. Similarly for AdS5-cuts Ĉa and fermionic poles x∗
a

20

C̃Ã+a = 1/C̃a, ĈÂ+a = 1/Ĉa, x∗
A∗+a = 1/x∗

a. (3.5)

Note that there is an arbitrariness of which cuts are considered fundamental and
which are their images under the symmetry. E.g. we might replace C̃a by 1/C̃a which
effectively interchanges C̃a and C̃Ã+a without changing the curve.

• The unimodularity condition (2.29) together with (3.2) translates to

p̃1 + p̃2 + p̃3 + p̃4 = p̂1 + p̂2 + p̂3 + p̂4. (3.6)

• A common shift of all sheets

p̃(x) 7→ p̃(x) − 4πυ

1 − 1/x2
, p̂(x) 7→ p̂(x) − 4πυ

1 − 1/x2
(3.7)

is considered unphysical, c.f. Sec. 2.4.

For the cuts and poles we define several cycles and periods, c.f. Fig. 4:

• We define the cycles Ãa, Âa which surround the cuts C̃a, Ĉa, respectively. The cuts,
which connect the branch points {x̃±

a }, {x̂±
a }, have been arranged in such a way that

∮

Ãa

dp̃ = 0,

∮

Âa

dp̂ = 0. (3.8)

This can be achieved by a reorganization of cuts which corresponds to a Sp(2Ã, Z)
or Sp(2Â, Z) transformation, respectively [17].

20Within sums a self-symmetric cut will be counted with weight 1/2.

21



p̃l̃a
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∞
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Ãa
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a

x∗
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a
∞

B∗
a ∞

A∗
a

p̂l̂a Âa

Ĉa

p̂k̂a B̂a
∞

B̂a ∞

Figure 4: Cycles for S5-cuts (top), fermionic poles (middle) and AdS5-cuts (bottom). Generi-
cally, S5-cuts are along aligned in the imaginary direction while AdS5-cuts are along the real
axis.

• We define the cycle A∗
a which surrounds the fermionic pole x∗

a. There are no loga-
rithmic singularities at x∗

a ∮

A∗

a

dp̃ =

∮

A∗

a

dp̂ = 0. (3.9)

At the singular points x = ±1 there are no logarithmic singularities either

∮

±1

dp̃k =

∮

±1

dp̂k = 0. (3.10)

• We define periods B̃a, B̂a which connect x = ∞ on sheet k̃a, k̂a to x = ∞ on sheet
l̃a, l̂a through the cuts C̃a, Ĉa, respectively, see Fig. 4. These must be integral

∫

B̃a

dp̃ = 2πña,

∫

B̂a

dp̂ = 2πn̂a, (3.11)

because the monodromy at both ends of the B-period is trivial, Ω(∞) = I. Together
with the asymptotic behavior (3.2) and single-valuedness (3.8,3.9,3.10) this implies
that p̃(x), p̂(x) must jump by 2πña, 2πn̂a when passing through the cut C̃a, Ĉa, respec-
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tively. This is written as the equivalent condition

/̃pl̃a
(x) − /̃pk̃a

(x) = 2πña for x ∈ C̃a,

/̂pl̂a
(x) − /̂pk̂a

(x) = 2πn̂a for x ∈ Ĉa. (3.12)

• The period B∗
a for a fermionic pole connects x = ∞ to x = x∗

a on sheet k∗
a of p̃(x). It

then continues from x = x∗
a to x = ∞ on sheet l∗a of p̂(x). As fermionic singularities

arise for coinciding eigenvalues, the regular parts of p̃(x) and p̂(x) must be equal
modulo a shift by 2πn∗

a

/̂pl̂a
(x∗

a) − /̃pk̃a
(x∗

a) = 2πn∗
a. (3.13)

Expressed as a B-period this yields

−
∫

B∗

a

dp = 2πn∗
a. (3.14)

• In addition to Ω(∞) = I we also have Ω(0) = I. This means that a period connecting
x = 0 with x = ∞ must be a multiple of 2π. In fact, the symmetry (3.3) enforces

p̃1,2(0) = −p̃3,4(0) =

∫ 0

∞

dp̃1,2 = −
∫ 0

∞

dp̃3,4 = 2πm, p̂k(0) =

∫ 0

∞

dp̂k = 0. (3.15)

The integral for the AdS5-part must vanish, because there cannot be windings on the
time circle of AdS5 [28]. In fact, for physical applications one needs to consider the
universal covering of AdS5 where time circle has been decompactified.

• When no confusion arises, we may use a unified notationAa and Ba with a = 1, . . . , 2A
for cuts and poles, Ãa, Âa,A∗

a and B̃a, B̂a,B∗
a. The total number of cuts and poles is

A = Ã + Â + A∗. In this case we label the sheets pk by k = 1, . . . , 8 according to

p1,2 = p̂1,2, p3,4,5,6 = p̃1,2,3,4, p7,8 = p̂3,4. (3.16)

This ordering leads to the configuration of sheets as depicted in Fig. 3. Some details
of this representation are discussed in App. D. It makes physical excitations and the
comparison to gauge theory more transparent.

3.2 Ansatz

The characteristic function of our algebraic curve is rational

F (y, x) =
F̃ (y, x)

F̂ (y, x)
=

F̃4(x)y4 + F̃3(x)y3 + F̃2(x)y2 + F̃1(x)y + F̃0(x)

F̂4(x)y4 + F̂3(x)y3 + F̂2(x)y2 + F̂1(x)y + F̂0(x)
, (3.17)

with F̃k(x), F̂k(x) polynomials in x. The curve y(x) = {ỹ(x)||ŷ(x)} obeys the algebraic
equation

F̃ (ỹ(x), x) = 0, F̂ (ŷ(x), x) = 0. (3.18)

We define the curve y(x) with a different prefactor as compared to the previous section
as

y(x) = (x − 1/x)2x p′(x). (3.19)

This definition removes the poles at x = ±1 [29].
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Branch Points and Fermionic Poles. Bosonic branch points x̃±
a of the S5 part

manifest themselves as inverse square roots in ỹ(x). An asymptotic analysis shows that
they are obtained when

F̃4(x̃
±
a ) = F̃3(x̃

±
a ) = 0 while F̃ ′

4(x̃
±
a ) 6= 0 6= F̃ ′

3(x̃
±
a ). (3.20)

Similarly for branch points x̂±
a in the AdS5 part

F̂4(x̂
±
a ) = F̂3(x̂

±
a ) = 0 while F̂ ′

4(x̂
±
a ) 6= 0 6= F̂ ′

3(x̂
±
a ). (3.21)

Fermionic singularities x∗
a manifest themselves as double poles in y(x). A double pole is

achieved by

F̃4(x
∗
a) = F̃ ′

4(x
∗
a) = F̂4(x

∗
a) = F̂ ′

4(x
∗
a) = 0 while F̃3(x

∗
a) 6= 0 6= F̂3(x

∗
a). (3.22)

The behavior of F2,1,0 is generic at these points. Here we see that a non-zero F3, unlike
in [29], is required due to fermions. All these singularities are encoded in F4(x) as

F̃4(x) = x4
2Ã∏

a=1

(x − x̃+
a )

2Ã∏

a=1

(x − x̃−
a )

2A∗∏

a=1

(x − x∗
a)

2,

F̂4(x) = x4
2Â∏

a=1

(x − x̂+
a )

2Â∏

a=1

(x − x̂−
a )

2A∗∏

a=1

(x − x∗
a)

2. (3.23)

The factor x4 is introduced for convenience as we shall see below. For F̃4(x), F̂4(x) there
are in total 4Ã + 4Â + 2A∗ degrees of freedom.

Asymptotics. At x = ∞ the curve behaves as y(x) ∼ x and at x = 0 as y(x) ∼ 1/x.
This is achieved by the following range of exponents in the polynomials

F̃k(x) = ∗x4Ã+4A∗+8−k + . . . + ∗xk,

F̂k(x) = ∗x4Â+4A∗+8−k + . . . + ∗xk. (3.24)

We can now count the remaining number of free coefficients. In F̃k(x), F̂k(x), k < 4,
there are 4Ã+4A∗ +9−2k and 4Â+4A∗ +9−2k degrees of freedom, respectively. This
leaves 20Ã + 20Â + 34A∗ + 48 relevant coefficients in total.

Unimodularity. The unimodularity condition ŷ1 + ŷ2 + ŷ3 + ŷ4 = ỹ1 + ỹ2 + ỹ3 + ỹ4 is
imposed as a relation of the two leading coefficients of the algebraic equation

F̃3(x)

F̃4(x)
=

F̂3(x)

F̂4(x)
. (3.25)

This requires

F̃3(x) = F ∗
3 (x)

2Ã∏

a=1

(x − x̃+
a )

2Ã∏

a=1

(x − x̃−
a ),

F̂3(x) = F ∗
3 (x)

2Â∏

a=1

(x − x̂+
a )

2Â∏

a=1

(x − x̂−
a ), (3.26)
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with some polynomial
F ∗

3 (x) = ∗x4A∗+5 + . . . + ∗x3. (3.27)

It reduces the number of degrees of freedom by 4Ã+4Â+4A∗+3 to 16Ã+16Â+30A∗+45.

Symmetry. The symmetry y(1/x) = y(x) is realized by the conditions

F̃k(1/x) = x−4Ã−4A∗−8F̃k(x),

F̂k(1/x) = x−4Â−4A∗−8F̂k(x),

F ∗
3 (1/x) = x−4A∗−8F ∗

3 (1/x). (3.28)

This yields 8Ã+8Â+15A∗ +19 constraints and leaves 8Ã+8Â+15A∗ +26 coefficients.

Singularities. We have to group up the residues at x = ±1 according to Sec. 2.6: Out
of the 16 residues, there should only be 4 independent ones. This gives 12 constraints,
but two of them have already been imposed by the unimodularity condition. As the
singularities are at the fixed points x = ±1 of the symmetry x 7→ 1/x, all 10 constraints
can be imposed independently. This leaves 8Ã + 8Â + 15A∗ + 16 degrees of freedom.

Unphysical Branch Points. In addition to the physical branch points at x̃±
a , x̂±

a the
algebraic curve might have further ones. Generically, these singularities are square roots
in contrast to the physical one which are inverse square roots. We can remove them
using a condition of the discriminants21

R̃ = −4F̃ 2
1 F̃ 3

2 F̃4 + 16F̃0F̃
4
2 F̃4 − 27F̃ 4

1 F̃ 2
4 + 144F̃0F̃

2
1 F̃2F̃

2
4 − 128F̃ 2

0 F̃ 2
2 F̃ 2

4 + 256F̃ 3
0 F̃ 3

4

+ 18F̃ 3
1 F̃2F̃3F̃4 − 80F̃0F̃1F̃

2
2 F̃3F̃4 − 192F̃ 2

0 F̃1F̃3F̃
2
4 − 6F̃0F̃

2
1 F̃ 2

3 F̃4 + 144F̃ 2
0 F̃2F̃

2
3 F̃4

+ F̃ 2
1 F̃ 2

2 F̃ 2
3 − 4F̃0F̃

3
2 F̃ 2

3 − 4F̃ 3
1 F̃ 3

3 + 18F̃0F̃1F̃2F̃
3
3 − 27F̃ 2

0 F̃ 4
3 (3.29)

and similarly for R̂. The discriminants measure the product of squared distances of
solutions ỹk(x) or ŷk(x). A single root of R̃(x) = 0 or R̂(x) = 0 thus implies a square
root behavior which can only occur at x = x̃±

a or x = x̂±
a . The discriminants must

therefore have the form

R̃(x) = x12(x2 − 1)4
2Ã∏

a=1

(x − x̃+
a )

2Ã∏

a=1

(x − x̃−
a ) Q̃(x)2,

R̂(x) = x12(x2 − 1)4
2Â∏

a=1

(x − x̂+
a )

2Â∏

a=1

(x − x̂−
a ) Q̂(x)2. (3.30)

It is clear that x̃±
a and x̂±

a are roots, because all terms in (3.29) contain F̃4 or F̃3. Noting
the generic form of the discriminants

R̂(x) = ∗x24Ã+24A∗+36 + . . . + ∗x12,

R̃(x) = ∗x24Â+24A∗+36 + . . . + ∗x12. (3.31)
21We could also use the equivalent condition: All solutions to dF = 0 are on the curve unless there

is a physical singularity at this value of x. However, it is not quite clear how to count the number of
constraints from this condition.
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together with the inversion symmetry we find 5Ã + 5Ã + 12A∗ + 8 constraints and
3Ã + 3Â + 3A∗ + 8 remaining degrees of freedom.

Single Poles and A-Cycles. We need to remove all the single poles and A-cycles
from the curve y(x) which would otherwise give rise to undesired logarithmic behavior
in the quasi-momentum when restoring the quasi-momentum from its derivative. The
symmetry x 7→ 1/x allows for 8 independent single poles in y(x) at x = ±1. There
are Ã + Â independent A-cycles around bosonic cuts. Fermionic singularities contribute
2A∗ independent single poles: one for ỹ and one for ŷ at each x = x∗

a modulo inversion
symmetry. Among all these single poles and A-cycles, there are 4 relations from the sum
over all residues, one for each pair of sheets related by the symmetry. In total this yields
Ã + Â + 2A∗ + 4 constraints and leaves 2Ã + 2Â + A∗ + 4 coefficients.

B-Periods. For each bosonic cut and for each fermionic singularity there is a B-period
which must be integral. Furthermore, for each pair of sheets related by the symmetry, the
B-period connecting 0 and ∞ must also be integral. Due to the unimodularity condition,
only three of these periods are independent. In total we obtain Ã+Â+A∗+3 constraints
and are left with Ã + Â + 1 degrees of freedom.

Hypercharge. One degree of freedom corresponds to an irrelevant shift of the La-
grange multiplier, c.f. Sec. 2.4. The final number of moduli for admissible curves is
Ã + Â.

3.3 Mode Numbers and Fillings

We will now associate each of the Ã + Â moduli of the curve to one parameter per pair
of bosonic cuts. We define the filling of an S5-cut C̃a connecting sheets k̃a and l̃a as

K̃a = −
√

λ

8π2i

∮

Ãa

dx

(
1 − 1

x2

)
p̃k̃a

(x) =

√
λ

8π2i

∮

Ãa

(
x +

1

x

)
dp̃k̃a

. (3.32)

Our definition uses the sheet k̃a, alternatively we might use l̃a and invert the sign.
Equivalently, we define the filling for an AdS5-cut Ĉa, but now using the sheet l̂a

K̂a = −
√

λ

8π2i

∮

Âa

dx

(
1 − 1

x2

)
p̂l̂a

(x) =

√
λ

8π2i

∮

Âa

(
x +

1

x

)
dp̂l̂a

. (3.33)

The corresponding definition using the sheet k̂a would require an opposite sign. For
completeness, we also define a filling for fermionic singularities x∗

a

K∗
a = −

√
λ

8π2i

∮

A∗

a

dx

(
1 − 1

x2

)
p̃k∗

a
(x) =

√
λ

8π2i

∮

A∗

a

(
x +

1

x

)
dp̃k∗

a
. (3.34)

which we could also write using p̂l∗a . It is not an independent modulus and it measures
the residue at x∗

a.
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In addition to the fillings, a curve is specified by the mode numbers

ña =
1

2π

∫

B̃a

dp, n̂a =
1

2π

∫

B̂a

dp, n∗
a =

1

2π
−
∫

B∗

a

dp. (3.35)

These are discrete parameters and therefore not count as moduli. Note that the B-periods
all start at x = ∞ on sheet k̃a, k̂a, k

∗
a and end at x = ∞ on sheet l̃a, l̂a, l

∗
a, respectively.

Furthermore, there is one overall winding number defined as

m =
1

2π

∫ 0

∞

p̃1,2 = − 1

2π

∫ 0

∞

p̃3,4. (3.36)

It is defined through the S5-part of the curve and there is no corresponding quantity for
the AdS5-part, because there cannot be windings in the non-compact time direction of
the universal covering of AdS5 [28].

In most cases, the fillings give the right number of moduli, but for m = 0 there is
a constraint among the fillings as we shall see below. Therefore, let us introduce one
further modulus which we call the length22

L =

√
λ

16π2i

∮

+1

dx
4∑

k=1

εkp̃k +

√
λ

16π2i

∮

−1

dx
4∑

k=1

εkp̃k +
A∑

a=1

√
λ

8π2i

∮

Aa

dx

x2

4∑

k=1

εkp̃k. (3.37)

Note that we use only half of the 2A cuts for the definition of length, one from each
pair related by inversion symmetry. This definition depends on which of the two cuts
we select from each pair and is therefore ambiguous. In a particular limit, however, this
choice is obvious as we shall see in Sec. 3.7. The length is related to the fillings by the
constraint23

mL =

A∑

a=1

naKa (3.38)

which means that among {L, Ka} there are only Ã + Â independent continuous param-
eters: Ã + Â − 1 independent fillings Ka and the length L. To derive it, consider the
integral

0 =

√
λ

32π3i

∮

∞

dx
4∑

k=1

(
p̃2

k(x) − p̂2
k(x)

)

=

√
λ

32π3i

∮

+1

dx
4∑

k=1

(
p̃2

k(x) − p̂2
k(x)

)
+

√
λ

32π3i

∮

−1

dx
4∑

k=1

(
p̃2

k(x) − p̂2
k(x)

)

+

2A∑

a=1

√
λ

32π3i

∮

Aa

dx

4∑

k=1

(
p̃2

k(x) − p̂2
k(x)

)

= mL −
A∑

a=1

naKa. (3.39)

22The term ‘length’ is due to analogy with spin chains. For an alternative approach to identifying
this conserved charge in the sigma model, see [43].

23This constraint reveals the ambiguity of L: For some cuts the mode numbers and fillings of the
mirror cut are related by nA+a = 2m − na, KA+a = −Ka. If we interchange the cut Ca with its mirror
image CA+a, L changes by 2Ka.
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The first integral is zero due to p(x) ∼ 1/x at x = ∞. We then split up the contour
of integration around the singularities and cuts. To obtain the last line, we split up the
integrals around x = ±1 evenly in two and also split up the sum

∑2A
a=1 into

∑A
a=1 and∑2A

a=A+1. Then we transform half of the integrals to 1/x

∫

AA+a

dx f(x) = −
∫

Aa

dx

x2
f(1/x) (3.40)

and use the inversion symmetry

4∑

k=1

(
p̃2

k(1/x) − p̂2
k(1/x)

)
=

4∑

k=1

(
p̃2

k(x) − p̂2
k(x)

)
− 4πm

4∑

k=1

εkp̃k(x) + 16π2m2 (3.41)

to transform them back. The terms proportional to m2 drop out from the integrals, they
contain no residue, while the terms multiplying m sum up to L. The remaining integrals
around x = ±1

√
λ

64π3i

∮

±1

dx

(
1 − 1

x2

) 4∑

k=1

(
p̃2

k(x) − p̂2
k(x)

)
= 0. (3.42)

sum up to zero as discussed in Sec. 2.7. In the final step we have employed the identity

√
λ

32π3i

∮

Aa

dx

(
1 − 1

x2

) 4∑

k=1

(
p̃2

k(x) − p̂2
k(x)

)
= −naKa (3.43)

which one obtains after pulling the contour Aa tightly around the cut Ca. Then the
integrand p2(x + ǫ) − p2(x − ǫ) can be split into symmetric and antisymmetric parts.
The antisymmetric part is equal on two sheets up to a sign. The symmetric parts then
combine using (3.12,3.13) and yield 2πna. The remaining integral is the filling.

A more direct way to derive the constraint uses the Riemann bilinear identity

1

2πi

∑

a

(∮

Aa

dp

∫

Ba

dq −
∫

Ba

dp

∮

Aa

dq

)
=

1

2πi

∑

a

Resa(p dq) (3.44)

valid for any curve with a set of independent cycles Aa,Ba and two arbitrary holomorphic
differentials dp, dq. Let us briefly sketch the proof: We take as p the quasi-momentum and
dq = p dx and count the S5-part and AdS5-parts with opposite signs. The first product
of integrals will be zero due to (3.8). According to (3.11,3.32,3.33) the second product of
integrals leads to the sum

∑
a naKa over the bosonic cuts when the symmetry is taken

into account as explained above. The sum of residues of p2 yields the contributions
from the fermions using (3.14,3.34). The residues from x = ±1 cancel and the term mL
appears during symmetrization as above.

3.4 Moduli of String Solutions

At this point we briefly summarize our results on the number of moduli and compare
it to the general solution of strings in flat space or on plane waves. We have found
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one continuous modulus, the filling Ka, and one discrete parameter, na, per pair of cuts
(related by inversion symmetry). Furthermore we need to specify which of the 4|4 sheets
are connected by the cut through ka, la. The situation for fermionic poles is similar, only
that their filling is not an independent parameter. In addition, there is one continuous
global modulus, the length L, and one discrete global parameter, m, but also one global
constraint which relates Ka, na, L, m. Note that we have discarded λ which can be
considered as an external parameter.

The classification for (classical) strings in flat space or on plane waves is similar:
Consider a solution with only a finite number of active string modes. Let us furthermore
assume a light-cone gauge to focus on the physical excitations. Then each mode is
described by its mode number (na), amplitude (Ka) and orientation (ka, la) where we have
indicated in brackets the corresponding quantities in our sigma model. The amplitudes
of fermions cannot be specified by regular numbers and thus should not be counted as
continuous moduli. One overall level matching constraint relates the amplitudes and
mode numbers (Ka, na). The string tension (λ) will again be considered external. The
only difference between strings in flat space and out model is the lack of a modulus
describing the effective curvature (L) and a parameter describing winding (m).

While the relation between amplitudes and fillings as well as integers n and mode
numbers is obvious, the relation between sheets and orientation of the string needs further
explanations. For cuts related to S5 we see that there are 6 pairs of sheets and thus 6
choices for (k̃a, l̃a). Similarly for AdS5. Fermions have to connect one sheet of each type
and thus there are 16 choices. It thus seems that there are (6+6)|16 orientations. There
is however a further criterion which we use to distinguish cuts and poles. We denote
the cuts/poles with εk 6= εl as physical. The cuts/poles with εk = εl are considered
auxiliary. The explanation for this classification is that precisely the physical cuts/poles
appear within the combination q(x) in (2.73) which is used to define the local charges
(and also the energy shift, c.f. the following subsection). Among the 6 types of bosonic
cuts each, there are 4 physical and 2 auxiliary ones. The 16 types of fermionic poles
split up evenly into 8 physical and 8 auxiliary ones. Thus the counting of orientations
for physical modes, (4 + 4)|8, is as expected for a superstring.

In conclusion we see that the moduli of admissible curves are in one to one correspon-
dence to the moduli describing closed superstrings in flat space. We expect that the num-
ber of moduli and their types should be mostly independent of the background. The only
relevant properties for the enumeration of moduli (open/closed, bosonic/supersymmetric,
number of spacetime dimensions, smoothness of the target space, . . . ) are the same in
both theories. We take this as compelling evidence that all admissible curves, as dis-
cussed in this section, indeed correspond to at least one string solution. We thus believe
that we have not missed a relevant characteristic feature in Sec. 2 for the construction
of admissible curves and that our classification is complete.24

24We only refer to the action variables of string solutions. Of course, the (time-dependent) angle
variables are not described by the algebraic curve. According to standard lore, they correspond to a set
of marked point on the Jacobian of the curve.
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3.5 Global Charges

Here we shall relate the global charges of PSU(2, 2|4) to the fillings. Let us concentrate
on S5 at first and define global fillings

K̃1 = −
A∑

a=1

√
λ

8π2i

∮

Aa

dx

(
1 − 1

x2

)(
3
4
p̃1 − 1

4
p̃2 − 1

4
p̃3 − 1

4
p̃4

)
,

K̃2 = −
A∑

a=1

√
λ

8π2i

∮

Aa

dx

(
1 − 1

x2

)(
1
2
p̃1 + 1

2
p̃2 − 1

2
p̃3 − 1

2
p̃4

)
,

K̃3 = −
A∑

a=1

√
λ

8π2i

∮

Aa

dx

(
1 − 1

x2

)(
1
4
p̃1 + 1

4
p̃2 + 1

4
p̃3 − 3

4
p̃4

)
. (3.45)

These can also be represented as a sum of fillings K̃a of the individual cuts and residues
K∗

a of fermionic poles. We will not do this explicitly, as there are too many pairs of
sheets and thus too many types of cuts. The Dynkin labels [r̃1, r̃2, r̃3] of SU(4) are given
by the following combinations

r̃j =

√
λ

8π2i

∮

∞

dx
(
p̃j(x) − p̃j+1(x)

)
. (3.46)

Their relation to the global fillings is as follows

r̃1 = K̃2 − 2K̃1, K̃1 = 1
2
L − 3

4
r̃1 − 1

2
r̃2 − 1

4
r̃3,

r̃2 = L − 2K̃2 + K̃1 + K̃3, K̃2 = L − 1
2
r̃1 − r̃2 − 1

2
r̃3,

r̃3 = K̃2 − 2K̃3, K̃3 = 1
2
L − 1

4
r̃1 − 1

2
r̃2 − 3

4
r̃3.

(3.47)

To derive these, it is convenient to make use of the inversion symmetry, c.f. the previous
subsection.

For AdS5 the results are very similar. Again we define the global fillings

K̂1 =

A∑

a=1

√
λ

8π2i

∮

Aa

dx

(
1 − 1

x2

)(
3
4
p̂1 − 1

4
p̂2 − 1

4
p̂3 − 1

4
p̂4

)
,

K̂2 =

A∑

a=1

√
λ

8π2i

∮

Aa

dx

(
1 − 1

x2

)(
1
2
p̂1 + 1

2
p̂2 − 1

2
p̂3 − 1

2
p̂4

)
,

K̂3 =
A∑

a=1

√
λ

8π2i

∮

Aa

dx

(
1 − 1

x2

)(
1
4
p̂1 + 1

4
p̂2 + 1

4
p̂3 − 3

4
p̂4

)
, (3.48)

which we might write as sums of the individual fillings. Then the Dynkin labels are given
by

r̂j =

√
λ

8π2i

∮

∞

dx
(
p̂j+1(x) − p̂j(x)

)
. (3.49)
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and related to the global fillings by

r̂1 = K̂2 − 2K̂1, K̂1 = −1
2
L − 1

2
δE − 3

4
r̂1 − 1

2
r̂2 − 1

4
r̂3,

r̂2 = −L − δE − 2K̂2 + K̂1 + K̂3, K̂2 = − L − δE − 1
2
r̂1 − r̂2 − 1

2
r̂3,

r̂3 = K̂2 − 2K̂3, K̂3 = −1
2
L − 1

2
δE − 1

4
r̂1 − 1

2
r̂2 − 3

4
r̂3.

(3.50)

Here we have introduced a new quantity δE, the energy shift

δE =

A∑

a=1

√
λ

8π2i

∮

Aa

dx

x2

4∑

k=1

(
−εkp̃k + εkp̂k

)
= −

A∑

a=1

√
λ

4π2i

∮

Aa

dx

x2
q(x) (3.51)

with q(x) defined in (2.73). When we write r̂2 in terms of the AdS5 energy E

E = −r2 − 1
2
r1 − 1

2
r3 = L + K̂2 + δE (3.52)

we see that δE is indeed the energy shift when L + K̂2 is interpreted as the bare energy.
Finally, we introduce the global fermionic filling

K∗ = −
A∑

a=1

√
λ

8π2i

∮

Aa

dx

(
1 − 1

x2

) 4∑

k=1

(
1
2
p̃k + 1

2
p̂k

)
. (3.53)

It is related to the hypercharge eigenvalue r∗

r∗ =

√
λ

8π2i

∮

∞

dx
4∑

k=1

(
1
2
p̃k(x) + 1

2
p̂k(x)

)
= 2B − K∗. (3.54)

We have introduced a charge B which is related to the Lagrange multiplier, see Sec. 2.4.
Under the symmetry it transforms as B 7→ B + 1

2
υ
√

λ.

3.6 Superstrings on AdS3 × S3

Let us consider solutions of the supersymmetric AdS5 × S5 sigma model which extend
only over a supersymmetric AdS3 × S3 subspace, which in fact is given by the group
manifold PSU(1, 1|2). For this class of solutions, the algebraic curve will split into two
disconnected parts. The first component consists of p̃2, p̃3 and p̂1, p̂4 and the other com-
ponent consists of the remaining four sheets. There are no branch cuts or fermionic poles
connecting the two parts. Both components are isomorphic to algebraic curves obtained
from the PSU(1, 1|2) sigma model [44]. One of them corresponds to the monodromy in
the fundamental representation, the other one to the monodromy in the antifundamental
representation. These two curves are not unrelated, for a sigma model on a group man-
ifold they should map into each other under inversion x 7→ 1/x. Indeed, this is precisely
what the AdS5 × S5 sigma model implies, see Sec. 2.5. There are several conceptual
differences which make it interesting to consider the AdS3 × S3 model separately.

First of all, the AdS3 × S3 model leads to one algebraic curve without inversion
symmetry (or, equivalently, two related algebraic curves) whereas the full AdS5 × S5
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model has only one self-symmetric curve. This also means that we can distinguish
between a cut and its image under inversion: They reside on different components of
the algebraic curve and we shall consider only one component. The definitions of length
(3.37) and energy shift (3.51) thus become natural and unambiguous. In fact they become
two of the global charges. Together with the spin S on AdS3 and spin J2 on S3 they are
the four charge eigenvalues of the isometry group PSU(1, 1|2) × PSU(1, 1|2). Again we
can express the global charges through the fillings

J2 = K̃ = −
A∑

a=1

√
λ

8π2i

∮

Aa

dx

(
1 − 1

x2

)(
1
2
p̃2 − 1

2
p̃3

)
,

S = K̂ =
A∑

a=1

√
λ

8π2i

∮

Aa

dx

(
1 − 1

x2

)(
1
2
p̂1 − 1

2
p̂4

)
, (3.55)

Here we have defined J2 and S to match the fillings. The expansion of the quasi-
momentum at x = ∞ is related to the charges of one of the global PSU(1, 1|2) factors

√
λ

8π2i

∮

∞

dx
(
p̃2 − p̃3

)
= L − 2K̃ = J1 − J2,

√
λ

8π2i

∮

∞

dx
(
p̂4 − p̂1

)
= −L − δE − 2K̂ = −E − S. (3.56)

For convenience, we have defined the spin J1 and energy E to replace the length and
energy shift as follow

L = J1 + J2, δE = E − L − S. (3.57)

The expansion at x = 0 relates to the charges of the other global PSU(1, 1|2) factor

√
λ

8π2i

∮

0

dx

x2

(
p̃2 − p̃3

)
= L = J1 + J2,

√
λ

8π2i

∮

0

dx

x2

(
p̂4 − p̂1

)
= −L − δE = −E + S. (3.58)

These expressions agree precisely with the rank-one subsectors of R×S3 and AdS3 ×S1

considered in [17, 28].

3.7 The Frolov-Tseytlin Limit

In this section we shall discuss the Frolov-Tseytlin limit L/
√

λ → ∞ of the curve.25 In
this limit, half of the cuts and poles approach x = ∞ and half of them approach x = 0.26

Let us label those cuts and poles which escape to x = ∞ by a = 1, . . . , A, those which
approach x = 0 will be labelled by a = A + 1, . . . , 2A. Therefore, there is a natural
choice for those cuts which contribute to the definition of the length in (3.37).

25At the level of the action and the Hamiltonian, this limit was studied in [27].
26Solutions with self-symmetric cuts do not have a proper Frolov-Tseytlin limit.
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Figure 5: The Frolov-Tseytlin limit of the configuration of cuts and poles in Fig. 3. All inverse
cuts and poles as well as the poles at x = ±1 have been scaled to u = 0 and absorbed into an
effective pole.

We will define for convenience a rescaled variable27

u =

√
λ

4π
x. (3.59)

In other words, in the u-plane all cuts and poles with a = 1, . . . , A approach finite values
of u while their images approach u = 0. Similarly, the poles at x = ±1 approach u = 0,
see Fig. 5. This means that the point u = 0 is special and p(u) near u = 0 is not directly
related to p(x) near x = 0, but there are contributions from the cuts and poles. To
understand the expansion of p(u) at u = 0 we shall define a contour C in the x-plane
which encircles the poles at x = ±1 and all the cuts and poles with a = A + 1, . . . , 2A.
Equivalently, this may be considered a contour which excludes x = ∞ and all the cuts
and poles with a = 1, . . . , A. After rescaling C merely encircles the point u = 0 in the
u-plane which can be used to obtain the expansion of p(u) according to the formula28

∂r−1pk

∂ur−1
(0) =

(
4πL√

λ

)r−1
1

2πi

∮

C

dx

xr
pk(x). (3.60)

Using the identities and definitions in Sec. 3.3,3.5 we find the singular behavior of all
sheets at u = 0

1

2πi

∮

C

p̃k(x) dx =
2π√

λ

(
B + εkL

)
−

A∑

a=1

1

2πi

∮

Aa

dx

x2
p̃k(x),

1

2πi

∮

C

p̂k(x) dx =
2π√

λ

(
B + εkL + εkδE

)
−

A∑

a=1

1

2πi

∮

Aa

dx

x2
p̂k(x) (3.61)

27This relationship needs to be refined at higher orders in L/
√

λ [17, 25].
28This formula explains why there are two different transfer matrices T (x), T̄ (u) in [25]. The transfer

matrix T̄ (u) is the suitable one for finite g, while T (x) is the effective one according to this formula. It
should also be useful to understand the relationship between conserved local charges in string theory
and gauge theory in [45].
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and the first few moments of the generator of local charges (2.73)

1

2πi

∮

C

dx q(x) = −2π δE√
λ

,

1

2πi

∮

C

dx

x
q(x) = 2πm,

1

2πi

∮

C

dx

x2
q(x) =

2π δE√
λ

. (3.62)

Now we note that the energy shift (3.51)

δE = −
A∑

a=1

√
λ

4π2i

∮

Aa

dx

x2
q(x) = − λ

8π2L

A∑

a=1

1

2πi

∮

Aa

du

u2
q(u). (3.63)

is of order O(λ/L). After rescaling we obtain the singular behavior of p(u) at u = 0 from
(3.60,3.61)

p̃k(u) ∼ p̂k(u) ∼ 1

u

(
εk

2
+

B

2L

)
(3.64)

and the first few local charges from (3.60,3.62)

q(u) = 2πm +
8π2L

λ
δE u + O(u2). (3.65)

In particular, the momentum constraint is q(0) = 2πZ while the individual sheets pk(u)
no longer have a fixed finite value at u = 0.

The above curve apparently is the spectral curve of the supersymmetric Landau-
Lifshitz model in [32].29 This model is related to the coherent state approach to gauge
theory [27]. Unlike the curve of the full superstring, this curve has only one singular
point at u = 0 and thus seems to be similar to the one of the classical Heisenberg
magnet discussed in [17]. We expect the expansion of the function q(u) around u = 0 to
yield the local charges of the model, while the point u = ∞ should be related to Noether
and multi-local charges.

4 Integral Representation of the Sigma Model

We can reformulate the algebraic curve in terms of a Riemann-Hilbert problem, i.e. as
integral equations on some density functions. This formulation is similar to the thermo-
dynamic limit of the Bethe equations for the gauge theory counterpart. It is thus suited
well for a comparison of both theories, especially at higher loops (once the gauge theory
results become available). We start by representing the various discontinuities of cuts
of the algebraic curve by integrals over densities. We then match this representation
to the properties derived earlier and thus fix several of the parameters. The remaining
properties lead to equations which are of the same nature as the Bethe equations in
the thermodynamic limit. In order to be more explicit, we specify the equations for a
number of subsectors, while full equations are written out only in App. D. Finally, we
compare to one-loop gauge theory and find complete agreement.

29We thank A. Mikhailov for discussions on this point.
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4.1 Parametrization of the Quasi-Momentum

The quasi-momentum p(x) is a function with two sets of four sheets p̃k(x) and p̂k(x),
k = 1, 2, 3, 4. These are analytic functions of x except at the singular points x = ±1, a
set of branch cuts and additional fermionic poles.

Ansatz. Let us construct a generic ansatz for p(x): It is straightforward to incorporate
the poles at x = ±1 with undetermined residues ã±

k and â±
k . The branch cuts and

fermionic poles will be contained in several resolvents G(x). All the resolvents G(x) will
be defined to vanish at x = ∞, consequently we should add an undetermined constant
b̃k, b̂k for each sheet.

The branch cuts connect two sheets of either p̃(x) or p̂(x). The discontinuity of the
branch cuts between sheets k and l is contained in the resolvent G̃kl(x) or Ĝkl(x). As the
graded sum of all sheets pk should be zero, the sum of discontinuities must cancel. In
other words, G̃kl and Ĝkl must be antisymmetric in k, l. A fermionic pole appears on a
sheet p̃k and a sheet p̂l with the same residue for both sheets. They are contained in the
resolvent G∗

kl(x). We shall include only the cuts/poles with a = 1, . . . , A in the resolvent
G(x). Their images with a = A + 1, . . . , 2A under the inversion symmetry (3.3) will
be incorporated by G(1/x). This leaves some discrete arbitrariness of which cuts/poles
belong to G(x) and which to G(1/x). Note that although the algebraic curve is invariant
under such permutations, our interpretation of some quantities will have to change.

Taking the above constraints into account, we arrive at the following ansatz

p̃k(x) =

4∑

l=1

(
G̃kl(x) − G̃k′l(1/x) + G∗

kl(x) − G∗
k′l(1/x)

)
+

ã+
k

x − 1
+

ã−
k

x + 1
+ b̃k,

p̂k(x) =

4∑

l=1

(
Ĝlk(x) − Ĝlk′(1/x) + G∗

lk(x) − G∗
lk′(1/x)

)
+

â+
k

x − 1
+

â−
k

x + 1
+ b̂k. (4.1)

where the permutation k′ of sheets is defined in (2.58). We will now determine the
constants using the known properties of p(x).

Resolvents. The bosonic resolvents G̃(x), Ĝ(x) are defined in terms of the densities
ρ̃(x), ρ̂(x) as follows

G̃kl(x) =

∫

C̃kl

dy ρ̃kl(y)

1 − 1/y2

1

y − x
, Ĝkl(x) =

∫

Ĉkl

dy ρ̂kl(y)

1 − 1/y2

1

y − x
. (4.2)

The fermionic resolvent G∗
kl(x) is given by a set of poles30

G∗
kl(x) =

A∗

kl∑

a=1

α∗
kl,a

1 − 1/x∗ 2
kl,a

1

x∗
kl,a − x

. (4.3)

30Strictly speaking the residues must be nilpotent numbers because they represent a product of two
Grassmann odd numbers, but we can mostly ignore this fact.
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All the resolvents vanish at x = ∞ and are analytic functions except on the curves Ca or
at the poles x∗

a. They are obviously single-valued, i.e. the cycles of dG around cuts/poles
vanish. The filling of a cut (3.32,3.33,3.34) is given by

K̃kl,a =

√
λ

4π

∫

C̃kl,a

dy ρ̃kl(y), K̂kl,a =

√
λ

4π

∫

Ĉkl,a

dy ρ̂kl(y), K∗
kl,a =

√
λ

4π
α∗

kl,a. (4.4)

Singularities. From Sec. 2.7 we know the general structure of the residues at x = ±1.
The residues ã±

k for S5 are linked to the residues â±
k for AdS5. Furthermore, all residues

are paired. We can thus write them in terms of four independent constants c1,2, d1,2 using
(2.60)

ã±
k = â±

k =: 1
2
c1 ± 1

2
c2 + 1

2
d1εk ± 1

2
d2εk. (4.5)

Asymptotics. The asymptotics p(x) ∼ 1/x at x = ∞ fixes all the constants b

b̃k =

4∑

l=1

(
G̃k′l(0) + G∗

k′l(0)
)

, b̂k =

4∑

l=1

(
Ĝlk′(0) + G∗

lk′(0)
)

. (4.6)

Unimodularity. The graded sum

4∑

k=1

(
p̃k(x) − p̂k(x)

)
= 0 (4.7)

of all sheets indeed vanishes trivially by antisymmetry of G̃kl, Ĝkl in k, l.

Symmetry. The inversion symmetry leads to the following expressions

p̃k(1/x) = −p̃k′(x) − ã+
k + ã−

k + b̃k + b̃k′

!
= −p̃k′(x) + 2πεkm,

p̃k(1/x) = −p̂k′(x) − â+
k + â−

k + b̂k + b̂k′

!
= −p̂k′(x) (4.8)

with the permutation k′ of sheets is defined in (2.58). When we substitute the above
expressions for ã±

k , â±
k , we find

c2 = 1
2

4∑

k,l=1

G∗
kl(0), d2 = 1

2

4∑

k,l=1

εk

(
Ĝlk(0) + G∗

lk(0)
)

(4.9)

as well as the (momentum) constraint

1
2

4∑

k,l=1

εk

(
G̃kl(0) + Ĝkl(0) + G∗

kl(0) − G∗
lk(0)

)
= 2πm. (4.10)

36



Length. We substitute p̃k in the definition of length and obtain

L =

√
λ

8π

4∑

k=1

εk(ã
+
k + ã−

k ) −
√

λ

4π

4∑

k,l=1

εk

(
G̃′

kl(0) + G∗′
kl(0)

)
(4.11)

This leads to

d1 =
2π L√

λ
+ 1

2

4∑

k,l=1

εk

(
G̃′

kl(0) + G∗′
kl(0)

)
. (4.12)

Note that we have assumed that all cuts a = 1, . . . , Ã are captured by G(x) while the
cuts a = Ã + 1, . . . , 2Ã are captured by G(1/x).

Hypercharge. The remaining constant c1 corresponds to a shift of the Lagrange mul-
tiplier and is irrelevant. We shall express it by means of the hypercharge B defined in
(3.54)

c1 = 1
2

4∑

k,l=1

G∗′
kl(0) +

2π B√
λ

. (4.13)

Energy Shift. We substitute pk in the definition of energy shift and obtain

δE =

√
λ

4π

4∑

k,l=1

εk

(
G̃′

kl(0) + G∗′
kl(0) − Ĝ′

lk(0) − G∗′
lk(0)

)
. (4.14)

4.2 Integral Equations

Let us now assemble and simplify the various findings of the previous section. As a first
step, we write G(x), but not G(1/x), G(0) or G′(0), in terms of the inversion-symmetric
function

Hkl(x) := Gkl(x) + Gkl(1/x) − Gkl(0). (4.15)

The terms in the integrand of H combine as follows

1

1 − 1/y2

(
1

y − x
+

1

y − 1/x
− 1

y

)
=

1

(y + 1/y)− (x + 1/x)
(4.16)

which means that we can write H as

H(x) :=

∫

C

du ρ(u)

u − (x + 1/x)
, (4.17)

where ρ transforms as a density, dx ρ(x) = du ρ(u), under the map

u(x) = x + 1/x, x(u) = 1
2
u + 1

2
u
√

1 − 4/u2 . (4.18)
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The conversion of G(x) to H(x) creates a few more instances of Gkl(1/x) which turn out
to pair up with existing instances of Gk′l(1/x) in all cases. These can be rewritten by
applying

fk + fk′ = 1
2

4∑

l=1

fl + 1
2
εk

4∑

l=1

εlfl (4.19)

This identity for any fk can easily be verified by evaluating it for all possible values
k = 1, 2, 3, 4. It is convenient to introduce the following combinations of resolvents

G̃sum(x) = 1
2

4∑

k,l=1

εk

(
G̃kl(x) + G∗

kl(x)
)
,

Ĝsum(x) = 1
2

4∑

k,l=1

εk

(
Ĝlk(x) + G∗

lk(x)
)
,

G∗
sum(x) = 1

2

4∑

k,l=1

G∗
kl(x),

Gmom(x) = G̃sum(x) − Ĝsum(x) (4.20)

We can now write down the simplified quasi-momentum

p̃k(x) =
4∑

l=1

(
H̃kl(x) + H∗

kl(x)
)

+ εkF̃ (x) + F ∗(x),

p̂k(x) =
4∑

l=1

(
Ĥlk(x) + H∗

lk(x)
)

+ εkF̂ (x) + F ∗(x). (4.21)

All the terms which do not follow the regular pattern of resolvents H could be absorbed
into three potentials F

F̃ (x) =

(
2π L√

λ
+ G̃′

sum(0)

)
1/x

1 − 1/x2
+

Ĝsum(0)

1 − 1/x2
− G̃sum(1/x) + Gmom(0),

F̂ (x) =

(
2π L√

λ
+ G̃′

sum(0)

)
1/x

1 − 1/x2
+

Ĝsum(0)

1 − 1/x2
− Ĝsum(1/x),

F ∗(x) =

(
2π B√

λ
+ G∗′

sum(0)

)
1/x

1 − 1/x2
+

G∗
sum(0)

1 − 1/x2
− G∗

sum(1/x) . (4.22)

It might be useful to note the transformation of the potentials F under the symmetry31

F̃ (1/x) = −F̃ (x) − H̃sum(x) + Gmom(0),

F̂ (1/x) = −F̂ (x) − Ĥsum(x),

F ∗(1/x) = −F ∗(x) − H∗
sum(x). (4.23)

31The summed resolvents Hsum are defined in analogy to (4.20).

38



The integral equations (3.12,3.13) enforcing integrality of the B-periods (3.11,3.14)
read

/̃pl(x) − /̃pk(x) = 2πñkl,a for x ∈ C̃kl,a,

/̂pl(x) − /̂pk(x) = 2πn̂kl,a for x ∈ Ĉkl,a,

/̂pl(x) − /̃pk(x) = 2πn∗
kl,a for x = x∗

kl,a. (4.24)

These equations must be supplemented by the momentum constraint (4.10)

Gmom(0) = 2πm. (4.25)

Note that the potential can appear in various combinations depending on the type of
cut/pole. Let us denote those cuts/poles with εk 6= εl as physical, the others are con-
sidered as auxiliary. The physical cuts are precisely the ones that contribute to Gmom

which in turn contains the total momentum for the momentum constraint (4.10) and the
energy shift (4.14). They connect sheets 1, 2 to sheet 3, 4 of either type. A physical cut
is subject to the potential 2F̃ or 2F̂ depending on whether it is of S5-type or AdS5-type.
For an auxiliary bosonic cut there is no effective potential. For physical fermionic poles
we get the potential F̃ + F̂ and F̃ − F̂ for auxiliary fermions.

The global charges are found at x = ∞, they are determined through the fillings K,
the length L and the energy shift δE: The expansion of H gives the total filling K of
the cuts in H

H(x) = −1

x

A∑

a=1

4π Ka√
λ

+ O(1/x2) = −1

x

4π K√
λ

+ O(1/x2). (4.26)

The expansion of F provides the length and the energy shift (4.14)

F̃ (x) =
1

x

2π L√
λ

+ O(1/x2), F̂ (x) =
1

x

2π (L + δE)√
λ

+ O(1/x2). (4.27)

The energy shift is given by

δE =

√
λ

2π
G′

mom(0). (4.28)

4.3 Rank-One Sectors

We will now investigate the cases when only one of the physical resolvents is non-zero.
The final result depends on the type of resolvent, G̃, Ĝ or G∗.

Bosonic, Compact. We turn on only G = G̃23 and consider one quasi-momentum
p = p̃2 = −p̃3. This reduces to the case of strings on R × S3 investigated in [17]

2/p(x) = +2 /H(x) + 2F̃ (x) = 2/G(x) +
2G′(0)/x

1 − 1/x2
+

4πL√
λ

1/x

1 − 1/x2
= −2πna for x ∈ Ca.

(4.29)
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Note that the term G(1/x) has precisely cancelled out and p(x) is no longer symmetric
under x 7→ 1/x. This is related to the fact that spacetime is now a group manifold. In
this case, the image under inversion is given by a different quasi-momentum, here p̃1.
Also the length L now becomes a true global charge next to J . This is related to the left
and right symmetry of group manifolds.

Bosonic, Non-Compact. We turn on only G = Ĝ14 and consider the single quasi-
momentum p = p̂1 = −p̂4. This reduces to the case of strings on AdS3 ×S1 investigated
in [28]

2/p(x) = −2 /H(x) + 2F̂ (x) = −2/G(x)− 2G(0)/x2

1 − 1/x2
+

4πL√
λ

1/x

1 − 1/x2
= −2πna for x ∈ Ca.

(4.30)

Fermionic. We turn on only G = G∗
24 and consider the quasi-momenta p̃ = p̃2, p̂ = p̂4.

The two quasi-momenta are given by p̃(x) = H(x) + F̃ (x) + F ∗(x) and p̂(x) = H(x) −
F̂ (x) + F ∗(x)

p̃(x) = G(x) +

(
2π (B + L)√

λ
+ G′(0)

)
1/x

1 − 1/x2
, (4.31)

p̂(x) = G(x) +
2π (B − L)√

λ

1/x

1 − 1/x2
+

G(0)/x2

1 − 1/x2
.

The relevant combination for the integral equation is the difference of sheets p̃(x)−p̂(x) =
F̃ (x) + F̂ (x)

/̃p(x) − /̂p(x) = −G(0)/x2

1 − 1/x2
+

G′(0)/x

1 − 1/x2
+

4πL√
λ

1/x

1 − 1/x2
= −2πna for x = x∗

a. (4.32)

This agrees precisely with the expression derived from the near-plane-wave limit in [24].

4.4 Superstrings on AdS3 × S3

The above three subsectors can be combined into one larger sector. Let us consider only
the following four sheets p1 = p̂1, p2 = p̃2, p3 = p̃3, p4 = p̂4 and corresponding resol-
vents Ĝ41, G̃23, G

∗
21, G

∗
31, G

∗
24, G

∗
34 so that again there is no apparent inversion symmetry.

By inspection of the quasi-momenta there are only three independent combinations of
resolvents appearing:

G1 = −G∗
21 − G∗

31 − Ĝ41,

Gmom = G2 = +G̃23 − G∗
31 + G∗

24 − Ĝ41,

G3 = +G∗
34 + G∗

24 − Ĝ41. (4.33)
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The quasi-momenta then read

p1(x) = − G1(x) +
1/x

1 − 1/x2

(
2π(B + L)√

λ
+ G′

2(0) − G′
1(0)

)
− G1(0)/x2

1 − 1/x2
,

p2(x) = G2(x) − G1(x) +
1/x

1 − 1/x2

(
2π(B + L)√

λ
+ G′

2(0) − G′
1(0)

)
− G1(0)/x2

1 − 1/x2
,

p3(x) = G3(x) − G2(x) +
1/x

1 − 1/x2

(
2π(B − L)√

λ
+ G′

3(0) − G′
2(0)

)
+

G3(0)/x2

1 − 1/x2
,

p4(x) = G3(x) +
1/x

1 − 1/x2

(
2π(B − L)√

λ
+ G′

3(0) − G′
2(0)

)
+

G3(0)/x2

1 − 1/x2
.

(4.34)

The differences of adjacent sheets which appear in the integral equations are given by

p1(x) − p2(x) = −G2(x),

p2(x) − p3(x) = +2G2(x) +
2G′

2(0)/x

1 − 1/x2
+

4πL√
λ

1/x

1 − 1/x2

− G̃1(x) − G′
1(0)/x

1 − 1/x2
− G1(0)/x2

1 − 1/x2

− G3(x) − G′
3(0)/x

1 − 1/x2
− G3(0)/x2

1 − 1/x2
,

p3(x) − p4(x) = −G2(x). (4.35)

Differences of non-adjacent sheets are obtained by summing up the equations.
For purely bosonic solutions on AdS3 × S3 we set G1(x) = G3(x) and

G̃(x) = G̃23(x) =

∫

C̃

dy ρ̃(y)

1 − 1/y2

1

y − x
= G2(x) − G1(x),

Ĝ(x) = Ĝ14(x) =

∫

Ĉ

dy ρ̂(y)

1 − 1/y2

1

y − x
= G1(x) = G3(x). (4.36)

The densities satisfy the following set of equations on the respective cuts:

2/̃G(x) + F (x) = −2πña for x ∈ C̃a,

2/̂G(x) − F (x) = −2πn̂a for x ∈ Ĉa, (4.37)

where the potential F (x) is given by

F (x) =

(
4πL√

λ
+ 2G̃′(0)

)
1/x

1 − 1/x2
− 2Ĝ(0)/x2

1 − 1/x2
. (4.38)

The momentum constraint (4.25) and energy shift (4.28) are contained in the combination

Gmom(x) = G̃(x) + Ĝ(x). (4.39)
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4.5 Comparison to Gauge Theory

Let us briefly comment on the comparison to N = 4 gauge theory. An in-depth com-
parison of the spectral curves can be found in [36]. The complete one-loop dilatation
generator has been derived in [35,15]. It is integrable and one can use a Bethe ansatz to
find its energy (scaling dimension) eigenvalues [35]. In the thermodynamic limit [26,10],
which should be related to string theory [9], the Bethe equations have been written
in [15]. Their form does not resemble the equations (4.21,4.22,4.24) very much, but
rather the one in the previous Sec. 4.4. We shall refrain from transforming the equations
here and refer the reader to App. D. The resulting equations (D.11)

7∑

j′=1

Mj,j′ /Hj′(x) + Fj(x) = −2πnj,a for x ∈ Cj,a (4.40)

can be seen to agree with the equations in [15]. Also the expressions for the momentum
constraint and energy shift as well as the local and global charges agree. Note that in
the Frolov-Tseytlin limit, see Sec. 3.7, the potential Fj reduces to a term proportional to
VjL/u, c.f. [17,29] for similar results. We have thus proven the agreement of the spectra
of one-loop planar gauge theory and classical string theory.

5 Conclusions and Outlook

We solve the problem of describing all classical solutions of the superstring sigma-model
in AdS5 × S5 in terms of their spectral curves. Let us underline the importance of
dealing with the whole supersymmetric string theory on the AdS5 × S5 space, including
the fermionic degrees of freedom, for its quantization. For the classical string we can
drop the fermions and the two bosonic sectors, AdS5 and S5, appear to be completely
factorized (up to the constraints on the fixed poles and total momentum). Conversely,
the quantum corrections at higher powers of ~ ∼ 1/

√
λ , make the two sectors interact

nontrivially, an effect which is already seen in the super spin chain for the one-loop
approximation to gauge theory. It is also clear that the direct quantization of sigma
models in closed subsectors, like R×S5, does not make much sense since those models are
even not conformal. It seems that it is better to attack directly the full supersymmetric
quantum theory on AdS5 × S5. Our paper shows that, at least at the classical level,
the full string theory has no principal difficulties comparing to the simpler subset sigma
models.

The curves are solutions of a Riemann-Hilbert problem and as such can be encoded in
the set of singular integral equations which we have derived. We hope that this classical
result will be a useful starting point for a quantization. Some indications that the
integrable structures persist in the quantum regime are found in [46–48,31,42,49]. There
are several benefits of the formulation in terms of algebraic curves which might facilitate
quantization: For one, the formulation is completely gauge independent, at no point one
is required to fix a gauge; especially we can preserve full kappa symmetry [34]. Moreover,
the curve consists only of action variables. Due to the Heisenberg principle this is all
we can ask for to know in the quantum theory. Finally, there are no unphysical degrees
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of freedom associated to the curve. These would usually contain spurious infinities and
their absence should make the curve completely finite. Our integral equations can be
interpreted as the classical limit of the yet to be found discrete Bethe equations, which
describe the exact quantum spectrum of the string, c.f. the ansatz by Arutyunov, Frolov
and Staudacher [46] and a corresponding ‘string chain’ [47] for some initial steps in this
direction. The existence of such equations is an assumption, but since many quantum
integrable systems are solvable by a Bethe ansatz, in particular some sigma models [50],
this assumption does not look inconceivable. We believe that in any event integrability
will be an important ingredient in solving string theory in AdS5 × S5, be it a Bethe
ansatz or some other method, and hope that our findings will be helpful in attacking
this challenging problem.

We should mention that many classical string solutions (those without self-symmetric
cuts) admit a regular expansion in the ’t Hooft coupling.32 We have compared the energy
spectrum of the classical string with the spectrum of anomalous dimensions in N = 4
SYM which at one loop is given by a Bethe ansatz. Our comparison is based on Bethe
equations but it can also be performed at at the level of spectral curves. Although we
should not expect agreement beyond third order in the effective coupling [12], we might
use the present result as a source of inspiration for higher-loop gauge theory.

The method of solving the spectral problem in terms of algebraic curves which we
employ for this sigma model is usually called the finite gap method (see the book [51]
for a good introduction). This means that we look for a finite genus algebraic curve
characterizing some solution. It was first proposed in [52] for the KdV system and later
generalized to KP equations in [53]. In principle, for any given algebraic curve one
can construct explicitly the corresponding solution of the equations of motion in terms
of Riemann theta functions. The dependence on time enters linearly in the argument
of the Riemann theta function and the frequencies are given by the periods of certain
Abelian differentials. Note that in our investigation we have the angle variables, these
enter as the initial phase for the arguments of the theta function. Moreover, to construct
the solution for the AdS5 × S5 coset model, one would first have to fix a gauge for the
local symmetries. Finally, only up to genus one the theta functions can be expressed in
terms of conventional algebraic and elliptic functions. Beyond that they are known only
as integrals or series and therefore less efficient.
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A Supermatrices

We shall write supermatrices as matrices where horizontal/vertical bars separate between
rows/columns with even and odd grading. We shall only consider bosonic supermatrices.
The grading matrix η consequently is given by

η =

(
+I 0
0 −I

)
. (A.1)

For example, it can be used to define the supertrace of a supermatrix as a regular trace
of a supermatrix

str A = tr η A (A.2)

The supertrace is cyclic
str A B = str B A. (A.3)

The superdeterminant is defined as

sdet

(
A B
C D

)
=

det(A − BD−1C)

det D
=

det A

det(D − CA−1B)
, (A.4)

it obeys
sdet(AB) = sdet A sdet B (A.5)

and is compatible with the identity

sdet exp A = exp str A. (A.6)

Supertranspose. The supertranspose is defined as

(
A B
C D

)
ST

=

(
AT CT

−BT DT

)
. (A.7)

Like the common transpose, it inverts the order within a product of matrices

(A B)ST = BST AST. (A.8)
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and does not change supertraces and superdeterminants

str AST = str A, sdet AST = sdet A. (A.9)

Unlike the common transpose, it is not an involution, but a Z4-operation due to the
identity

(AST)ST = η A η (A.10)

Furthermore, a supersymmetric or a superantisymmetric matrix require a slightly mod-
ified definition

A = +η AST, A = −η AST. (A.11)

(1|1) × (1|1) Supermatrices. Let us collect some formulas for (1|1) × (1|1) super-
matrices

A =

(
a b
c d

)
(A.12)

The inverse is given by

A−1 =

(
1
a

+ bc
a2d

− b
ad

− c
ad

1
d
− bc

ad2

)
. (A.13)

The supertrace and superdeterminant read

str A = a − d, sdet A =
a

d
− bc

d2
. (A.14)

It can be diagonalized by the matrices

T =

(
1 − bc

2(a−d)2
+ b

a−d

− c
a−d

1 + bc
2(a−d)2

)

, T−1 =

(
1 − bc

2(a−d)2
− b

a−d

+ c
a−d

1 + bc
2(a−d)2

)

, (A.15)

such that

TAT−1 =

(
α1 0
0 α2

)
, α1 = a +

bc

a − d
, α2 = d +

bc

a − d
. (A.16)

The eigenvalues satisfy the sum and product rules

α1 − α2 = str A,
α1

α2
= sdet A (A.17)

as well as the characteristic equation

sdet(A − α1) = 0, sdet(A − α2) = ∞. (A.18)

Clearly α1 and α2 are associated to different gradings. For str A = 0, i.e. a = d, the
eigenvalues degenerate and some problems arise as in the case of bosonic matrices.
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B Cosets and Vectors

In this appendix we shall explain the relationship between the vector model used in [29]
and the coset model used in this paper.

We will start with the coset model. The physically relevant cosets S5 = SU(4)/Sp(2)
and AdS5 = SU(2, 2)/Sp(1, 1) require several i’s at various places. These can be avoided
by considering the coset SL(4, R)/Sp(4, R). Its algebraic structure is precisely the same
but the formulas are slightly easier to handle. For the breaking of SL(4, R) we can use
a fixed 4 × 4 antisymmetric matrix E, say

E =

(
0 +I
−I 0

)
, (B.1)

where each block corresponds to a 2 × 2 matrix and I is the identity. The currents of
the coset model in the moving frame are

J = −g−1dg,

H = 1
2
J − 1

2
EJTE−1,

K = 1
2
J + 1

2
EJTE−1. (B.2)

In the fixed frame, which is related to the moving frame by j = gJg−1, etc., they are
given by

j = −dg g−1,

h = −1
2
dg g−1 + 1

2
gEdgTg−TE−1g−1,

k = −1
2
dg g−1 − 1

2
gEdgTg−TE−1g−1. (B.3)

We can now rewrite k as

k = −1
2
dg g−1 − 1

2
gEdgT(gEgT)−1 = −1

2
d(gEgT) (gEgT)−1. (B.4)

and see that it can be rewritten as

k = −1
2
dX X−1 with X = gEgT. (B.5)

We would now like to interpret X as the fundamental field of the theory. For all
g ∈ Sp(4, R) we find X = E, thus X parametrizes the coset SL(4, R)/Sp(4, R). Note
that we can define a norm for X by

εαβγδX
αβXγδ = εαβγδE

αβEγδ det g = −8. (B.6)

Starting from a generic matrix X, the conditions X = −XT and εαβγδX
αβXγδ = −8

leave 5 degrees of freedom for X and therefore such an X indeed parametrizes the coset
SL(4, R)/Sp(4, R) which has 15 − 10 = 5 dimensions. We now parametrize X as

X = ~σ · ~X, ~X2 = −1. (B.7)
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where ~X is a vector of SO(3, 3) and ~σ is a chiral component of the Clifford algebra. This
reveals the connection between the sigma model (B.5) and the vector model (B.7), they
are merely reparametrizations of the same model. More explicitly the matrix X is given
through the components of the vector ~X by

X =





0 +X1 + X4 +X2 + X5 +X3 + X6

−X1 − X4 0 +X3 − X6 −X2 + X5

−X2 − X5 −X3 + X6 0 +X1 − X4

−X3 − X6 +X2 − X5 −X1 + X4 0



 (B.8)

such that

1
8
εαβγδX

αβXγδ = ~X2 = X1
2 + X2

2 + X3
2 − X4

2 − X5
2 − X6

2. (B.9)

The corresponding expressions for SO(6) are

X =





0 +X1 + iX2 +X3 + iX4 +X5 + iX6

−X1 − iX2 0 +X5 − iX6 −X3 + iX4

−X3 − iX4 −X5 + iX6 0 +X1 − iX2

−X5 − iX6 +X3 − iX4 −X1 + iX2 0



 (B.10)

where again 1
8
εαβγδX

αβXγδ = ~X2, but with a positive signature of the norm. For SO(2, 4)
we find

X =





0 +X5 + iX0 +X1 + iX2 X3 + iX4

−X5 − iX0 0 +X3 − iX4 −X1 + iX2

−X1 − iX2 −X3 + iX4 0 −X5 + iX0

−X3 − iX4 +X1 − iX2 +X5 − iX0 0



 (B.11)

where ~X2 has signature +−−−−+. These expressions only differ from the expressions
for SO(3, 3) by relabelling the Xk and multiplying some of them by i.

C A Local Charge

Here we compute the first local charge as outlined in Sec. 2.6. Our starting point is
(2.68) where we have already diagonalized the leading order Ā−2 of the Lax connection
using some matrix T0,

Ā−2 = 1
2
T0(P+ − Λσ)T−1

0 =

(
αI 0
0 βI

)
. (C.1)

Let us see how this matrix can be used to block-diagonalize

Ā−1 = X̄ +
[
T1T

−1
0 , Ā−2

]
with X̄ = T−1

0 Q1,σT0 =

(
u v
x y

)
. (C.2)

The key insight is that the double commutator

[
Ā−2, [Ā−2, X̄]

]
= (α − β)2

(
0 v
x 0

)
(C.3)

47



can be used to extract the off-diagonal elements. We can thus cancel them in Ā−1 by
setting

T1 =
1

(α − β)2
[Ā−2, X̄]T0 (C.4)

and obtain

Ā−1 = X̄ − 1

(α − β)2

[
Ā−2, [Ā−2, X̄]

]
=

(
u 0
0 y

)
. (C.5)

We can continue and block-diagonalize Ār order by order in this fashion. Note that Ar

is block-diagonal if and only if [
Ā−2, Ār

]
= 0. (C.6)

Together with the identity for any matrix Ȳ

[
Ā−2,

[
Ā−2, [Ā−2, Ȳ ]

]]
= (α − β)2[Ā−2, Ȳ ] (C.7)

one can construct the higher order transformation matrices quite conveniently. The local
charges are defined via the trace of only one block ar of Ār. Again this can be achieved
using the matrix Ā−2 as follows

1

α − β
str Ā−2Ār =

1

α − β

(
α str ar + β str br

)
= str ar. (C.8)

Here it is important that str Ār = str ar − str br = 0.
Finally, we would like to express the local charges in terms of the physical currents

P, Q1,2. Note that all the expressions occurring in the conjugated T−1
0 ĀrT0 are commu-

tators of the currents, e.g.

T−1
0 Ā−1T0 = Q1,σ − ∆−2

+

[
P+, [P+, Q1,σ]

]
. (C.9)

where ∆+ = 2(α − β) is the difference of eigenvalues of P+. The only exception is a
term related to the diagonalization using T0, i.e. T−1

0 ∂σT0. Within the trace they can be
eliminated by making use of [

Ā−2, ∂σĀ−2

]
= 0 (C.10)

which is equivalent to the statement that ∂σĀ−2 is block-diagonal. This leads to

[
P+, [P+, T−1

0 ∂σT0]
]

=
[
P+, ∂σP+

]
(C.11)

and is sufficient to write every instance of T−1
0 ∂σT0 within str ar in terms of ∂σP+. Putting

everything together we find

str a2 = 1
2
∆−1

+ str P+P− + ∆−5
+ str[P+, DσP+][P+, DσP+]

− 6∆−5
+ str

[
[P+, Q1,σ], Q1,σ

]
[P+, DσP+]

+ 2∆−3
+ str[P+, Q1,σ]DσQ1,σ

− 2∆−3
+ str[P+, Q1,σ][P+, Q2,σ]

− ∆−5
+ str

[
[P+, Q1,σ], Q1,σ

][
[P+, Q1,σ], Q1,σ

]

− 5∆−7
+ str

[[
[P+, Q1,σ], P+

]
, Q1,σ

][[
[P+, Q1,σ], P+

]
, Q1,σ

]
. (C.12)
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Figure 6: ‘Beauty’ Dynkin diagram of su(2, 2|4) [22].

Here DσX = ∂σX−[Hσ, X] is the world-sheet covariant derivative. The conserved charge
corresponding to str a2 is the integral

q+
2 = −i

∫ 2π

0

dσ str a2. (C.13)

Furthermore there exists a world-sheet parity conjugate charge q−2 from the expansion
around z = ∞ instead of z = 0. It is obtained from q+

2 with the replacements P± → −P∓

and Q1,2 → Q2,1.

D Sleeping Beauty

This appendix contains lengthy expressions related to the complete superalgebra using
the ‘Beauty’ form of psu(2, 2|4) [22], c.f. Fig. 6. In this form, the grading of the sheets
corresponding to the fundamental representation reads

ηk = (−1,−1, +1, +1, +1, +1,−1,−1). (D.1)

The sheets of the quasi-momentum are arranged as follows

p1,2,7,8 = p̂1,2,3,4, p3,4,5,6 = p̃1,2,3,4. (D.2)

D.1 Global Charges

The global fillings are defined as

Kj =

A∑

a=1

√
λ

8π2i

∮

Ca

dx

(
1 − 1

x2

) j∑

k=1

ηkpk(x). (D.3)

The global filling Kj essentially measures the total filling of all (k, l)-cuts with k ≤ j < l.
The global fillings are directly related to the Dynkin labels [r1; r2; r3, r4, r5; r6; r7] of a
solution. The Dynkin labels are obtained through the residues at infinity

η̄jrj =

√
λ

8π2i

∮

∞

dx
(
pj(x) − pj+1(x)

)
, (D.4)
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where η̄j = [−1; +1; +1, +1, +1; +1;−1] are conventional factors for the definition of the
Dynkin labels. These are given by

r1 = K2 − 2K1,

r2 = K3 − K1 + 1
2
δE,

r3 = K2 + K4 − 2K3,

r4 = L − 2K4 + K3 + K5,

r5 = K4 + K6 − 2K5,

r6 = K5 − K7 + 1
2
δE,

r7 = K6 − 2K7. (D.5)

or for short
η̄jrj = Vj L + V̄j δE − Mj,j′Kj′ (D.6)

The labels V̄j = [0; 1
2
; 0, 0, 0; 1

2
; 0] indicate the change of (fermionic) Dynkin labels induced

by the energy shift. Note that the Dynkin labels obey the central charge constraint

−r1 + 2r2 + r3 = r5 + 2r6 − r7. (D.7)

The inverse relation is given by

K1 =− 1
2
L + 1

2
B − 1

4
r∗ − 3

4
r1 + 1

2
r2 + 1

2
r3 + 1

2
r4 + 1

2
r5 + 1

2
r6 − 1

4
r7 − 1

2
δE,

K2 =− L + B − 1
2
r∗ − 1

2
r1 + r2 + r3 + r4 + r5 + r6 − 1

2
r7 − δE,

K3 =− 1
2
L + 1

2
B − 1

4
r∗ − 1

2
r1 + r2 + 1

4
r3 + 1

2
r4 + 3

4
r5 + r6 − 1

2
r7 − δE,

K4 = − 1
2
r1 + r2 + 1

2
r3 + 1

2
r5 + r6 − 1

2
r7 − δE,

K5 =− 1
2
L− 1

2
B + 1

4
r∗ − 1

2
r1 + r2 + 3

4
r3 + 1

2
r4 + 1

4
r5 + r6 − 1

2
r7 − δE,

K6 =− L− B + 1
2
r∗ − 1

2
r1 + r2 + r3 + r4 + r5 + r6 − 1

2
r7 − δE,

K7 =− 1
2
L− 1

2
B + 1

4
r∗ − 1

4
r1 + 1

2
r2 + 1

2
r3 + 1

2
r4 + 1

2
r5 + 1

2
r6 − 3

4
r7 − 1

2
δE.

(D.8)

The constant B represents the hypercharge of the vacuum.

D.2 Integral Representation

We present the reduction of a full set of resolvents into seven simple ones Gj for the
AdS5 × S5 superstring. The easiest way to reduce the expressions is to drop all but the
resolvents between adjacent sheets. When the remaining resolvents are replaced by the
suitably defined simple resolvents Gj

G1 = −Ĝ21 + . . . ,

G2 = −G∗
12 + . . . ,

G3 = +G̃12 + . . . ,

Gmom = G4 = +G̃23 + . . . ,

G5 = +G̃34 + . . . ,

G6 = +G∗
43 + . . . ,

G7 = −Ĝ43 + . . . , (D.9)
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the original expressions are recovered. The quasi-momenta in terms of simple resolvents
read

p1(x) = − H1(x) + G2(1/x) − G2(0)

1 − 1/x2
+

(c1 + d1)/x

1 − 1/x2
,

p2(x) = H1(x) − H2(x) + G2(1/x) − G2(0)

1 − 1/x2
+

(c1 + d1)/x

1 − 1/x2
,

p3(x) = H3(x) − H2(x) + G2(1/x) − G2(0)

1 − 1/x2
+

(c1 + d1)/x

1 − 1/x2
− G4(1/x) + G4(0),

p4(x) = H4(x) − H3(x) + G2(1/x) − G2(0)

1 − 1/x2
+

(c1 + d1)/x

1 − 1/x2
− G4(1/x) + G4(0),

p5(x) = H5(x) − H4(x) − G6(1/x) +
G6(0)

1 − 1/x2
+

(c1 − d1)/x

1 − 1/x2
+ G4(1/x) − G4(0),

p6(x) = H6(x) − H5(x) − G6(1/x) +
G6(0)

1 − 1/x2
+

(c1 − d1)/x

1 − 1/x2
+ G4(1/x) − G4(0),

p7(x) = H6(x) − H7(x) − G6(1/x) +
G6(0)

1 − 1/x2
+

(c1 − d1)/x

1 − 1/x2
,

p8(x) = H7(x) − G6(1/x) +
G6(0)

1 − 1/x2
+

(c1 − d1)/x

1 − 1/x2
(D.10)

with c1 = 2πB/
√

λ + 1
2
G′

6(0) − 1
2
G′

2(0) and d1 = 2πL/
√

λ + G′
4(0) − 1

2
G′

2(0) − 1
2
G′

6(0).
The integral equations are given by

/pj+1(x) − /pj(x) = −
7∑

j′=1

Mj,j′ /Hj′(x) − Fj(x) = 2πnj,a for x ∈ Cj,a (D.11)

with Mj,j′ the Cartan matrix. Here, the non-zero potentials Fj(x) read

F2(x) = F6(x) = G4(1/x) − G4(0),

F4(x) = −2G4(1/x) + 2G4(0) +
2G′

4(0)/x

1 − 1/x2

+ G2(1/x) − G2(0)

1 − 1/x2
− G′

2(0)/x

1 − 1/x2

+ G6(1/x) − G6(0)

1 − 1/x2
− G′

6(0)/x

1 − 1/x2

+
4πL√

λ

1/x

1 − 1/x2
. (D.12)
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effects in ferromagnetic spin chains and quantum corrections to classical strings”,
JHEP 0506, 011 (2005), hep-th/0502188.

[50] A. M. Polyakov and P. B. Wiegmann, “Theory of nonabelian Goldstone bosons in two
dimensions”, Phys. Lett. B131, 121 (1983). • A. M. Polyakov and P. B. Wiegmann,
“Goldstone fields in two-dimensions with multivalued actions”,
Phys. Lett. B141, 223 (1984). • L. D. Faddeev and N. Y. Reshetikhin, “Integrability of
the principal chiral field model in (1 + 1)-dimension”, Ann. Phys. 167, 227 (1986). •
E. Ogievetsky, P. Wiegmann and N. Reshetikhin, “The principal chiral field in
two-dimensions on classical Lie algebras: The Bethe ansatz solution and factorized
theory of scattering”, Nucl. Phys. B280, 45 (1987).

[51] S. Novikov, S. V. Manakov, L. P. Pitaevsky and V. E. Zakharov, “Theory of Solitons.
The Inverse Scattering Method”, Consultants Bureau (1984), New York, USA, 276p,
Contemporary Soviet Mathematics.

[52] A. R. Its and V. B. Matveev, “Schrödinger operators with finite-gap spectrum and
N-soliton solutions of the Korteweg-de Vries equation”,
Theor. Math. Phys. 23, 343 (1975). • B. A. Dubrovin, M. V. B. and S. P. Novikov,
“Non-linear equations of Korteweg-de Vries type, finite zone linear operators, and
Abelian varieties”, Russ. Math. Surveys 31, 59 (1976).

[53] I. M. Krichever, “Elliptic solutions of KP equations and integrable systems of particles”,
Funk. Anal. App. 14, 282 (1980).

55

http://arXiv.org/abs/hep-th/0403077
http://arXiv.org/abs/hep-th/0406256
http://arXiv.org/abs/hep-th/0409054
http://arXiv.org/abs/hep-th/0410282
http://arXiv.org/abs/hep-th/0502173
http://arXiv.org/abs/hep-th/0502188

	Introduction and Overview
	Supersymmetric Sigma Model
	The Coset Model
	Lax Connection and Monodromy
	The Algebraic Curve
	The Central Element
	Symmetry
	Local Charges
	Singularities
	Global Charges
	Bosonic AdS5S5, RS5 and AdS5S1 Sectors

	Moduli of the Curve
	Properties
	Ansatz
	Mode Numbers and Fillings
	Moduli of String Solutions
	Global Charges
	Superstrings on AdS3S3
	The Frolov-Tseytlin Limit

	Integral Representation of the Sigma Model
	Parametrization of the Quasi-Momentum
	Integral Equations
	Rank-One Sectors
	Superstrings on AdS3S3
	Comparison to Gauge Theory

	Conclusions and Outlook
	Supermatrices
	Cosets and Vectors
	A Local Charge
	Sleeping Beauty
	Global Charges
	Integral Representation


