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Based on the competition between members of a hierarchy of length scales in complex
multi-scale systems, it is shown how clustering of active quantities into concentrated
sets, like bubbles in a Swiss cheese, is a generic property that dominates the intermittent
structure. The halo-like surfaces of these clusters have scaling exponents lower than that
of their kernels, which can be as high as the domain dimension. Possible examples
include spots in fluid turbulence and droplets in spin-glasses.
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1. Introduction

It has long been recognized that active quantities in complex systems of many
types are not distributed evenly across a domain but cluster strongly into
irregular bubbles, as in a Swiss cheese. The nomenclature, the nature and shape
of the bubbles, and the physics in each subject may be substantially different.
Some examples are: spottiness in high Reynolds number fluid turbulence
(Batchelor & Townsend 1949; Kuo & Corrsin 1971; Meneveau & Sreenivasan
1991; Frisch 1995; Zeff et al. 2003) and boundary layers (Emmons 1951); droplet
formation in spin-glasses (Fisher & Huse 1986; Bray & Moore 1987; Palassini &
Young 2000); clustering behaviour in networks (West et al. 1999; Albert &
Barabási 2002); the preferential concentration of inertial particles (Eaton & Fessler
1994; Sigurgeirsson & Stuart 2002; Bec 2003; Bec et al. 2005; Holm & Putkaradze
2005), with applications to rain initiation by cloud turbulence (Falkovich et al.
2002); the clustering of luminous matter (Bak & Chen 2001, 2002; Paczuski &
Hughes 2004; Bak & Paczuski 2005) and magnetic bubbles in astrophysics
(Zweibel 2002). Clusters display strong features whose typical length scales are
much shorter than their averages, thus raising the question of the nature of the
interface between them and the surrounding longer scale regions. For instance, in
spin glasses Palassini & Young (2000) have shown that the ‘surface’ of the droplets
has a fractal-like structure, whereas the droplets themselves have the full domain
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dimension. In fluid turbulence the concentrated sets on which vorticity
accumulates are tubes and sheets, although the fractal nature of these is unclear.
These sets dominate the associated Fourier spectra which display a spikiness that
is the hallmark of what is usually referred to as intermittency (Batchelor &
Townsend 1949; Kuo & Corrsin 1971; Kerr 1985; Meneveau & Sreenivasan 1991;
Vincent & Meneguzzi 1994; Frisch 1995; Zeff et al. 2003).

While one cannot hope to make a uniform theory for so many disparate
examples whose origins, scale and governing equations widely differ, the ubiquity
of clustering phenomena suggests the existence of an underlying set of organizing
principles. The function of this paper is primarily mathematical; using simple but
broadly applicable ideas, it will demonstrate that a dominant principle behind
clustering is the existence of a hierarchy of length scales whose members are in
competition.
2. Competition within a hierarchy of length scales

Consider a d -dimensional system whose smallest characteristic (integral) scale L
is such that the system is statistically homogeneous on boxes UZ[0,L]d.
Moreover, it is endowed with the following two properties. Firstly, at each point
x2U, it possesses an ordered set of length scales ‘nZ‘n(x) associated with a
hierarchy of features labelled by nR2

LO‘1ðxÞR‘2ðxÞR/R‘nðxÞR‘nC1ðxÞ/: ð2:1Þ

The ‘n could be thought of as an ordered set of correlation or coherence lengths;
their inverses knðxÞZ‘K1

n ðxÞ clearly obey 1!Lkn%LknC1. Secondly, the
assumption is that the ensemble averages of the Lkn(x) are bounded above by
some ordered, positive parameters of the system satisfying 1!Rn%RnC1,

1!Lhkni%Rn: ð2:2Þ

The ensemble average h$i is a spatial average with respect to the Lebesgue
measure over U. Thus, while the ordering of the ‘n(x) must be respected at each
point, the ‘n themselves could be quite rough, e.g. they could consist of a series of
step functions.

If they become very small near points x� then they must obey ‘nOOðrdK3Þ
(rZjxKx�j and 3O0) so as not to violate equation (2.2).

Following an idea used by Gibbon & Doering (2003, 2005), consider the real
arbitrary parameters 0!m!1 and 0!a!1 such that mCaZ1. A version of
Hölder’s inequality, with A and B positive, is

hABi%hApi1=phBqi1=q; pK1 CqK1 Z 1: ð2:3Þ

With a choice of pZmK1 and qZaK1, we have

hkani%hkanC1iZ
knC1

kn

� �a

kan

� �
%

knC1

kn

� �a=m
* +m

hknia: ð2:4Þ
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Figure 1. A cartoon-like illustrative slice through U for one value of n: the black kernels,
surrounded by grey halos may take many shapes depending on the problem. Very small-scale
behaviour concentrates on the black and grey regions which constitute the set AC

n ðLnknO1Þ. The
halos have scaling exponents lower than those of the black kernels.

3Cluster formation
Re-arranging and factoring out a term hkani gives

knC1

kn

� �a=m
* +

Rhkani
hkani
hkni

� �a=m

: ð2:5Þ

Lower bounds on the ratio hkani=hkni can be found from equations (2.1) and (2.2)
thereby turning equation (2.5) into

knC1

kn

� �a=m

K½ðLknÞmRK1
n �a=m

* +
R0: ð2:6Þ

While it is possible that the integrand in equation (2.6) could be positive
everywhere in U, this cannot be assumed; the generic case is that the integrand
could take either sign. With the definition LnZLR

K1=m
n we have the pair of

inequalities

knC1

kn
WðLnknÞm; ð2:7Þ

for which R is valid on regions where the integrand is positive, designated as
good regions, and negative (!) on bad regions. The term ðLnknÞm on the right-
hand side of equation (2.7) remarkably contains the arbitrary parameter m which
lies in the range 0!m!1. Its existence is important because the ordering in
equation (2.1) applied to equation (2.7) makes it clear that everywhere within
the bad regions (! in equation (2.7)) there are large lower bounds on kn with
exponents containing 1/m

LnknO10LknOR1=m
n : ð2:8Þ

Let AC
n be the set on which LnknO1 and AK

n the set on which Lnkn%1. Then all
the bad regions (! in equation (2.7)), designated by the clusters of black kernels
in figure 1, lie in AC

n . The grey halos also lie in AC
n , and correspond to those parts

of the good regions (R in equation (2.7)), neighbouring the bad, for which
LnknO1; see also figure 2. It is in these halos where the lower bound ðLnknÞm
becomes operative. The white areas of figure 1 belong to AK

n in which the kn can
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ensemble average

Figure 2. An illustration of a single cluster with its grey halo (left figure) and their corresponding
regions (right figure); these lie in the rangeLknOR

1=m
n . Formany clusters the correspondingplot ofLkn

versus x would have an intermittent structure.
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be randomly distributed subject to their ordering in equation (2.1). It is clear
from equation (2.6) that the existence and location of the clusters may differ for
each n although no information is obtained regarding their distribution.

To show that the volume VC
n of AC

n comprises a small part of U, Chebychev’s
inequality relates the normalized Lebesgue measure mðAC

n Þ to the integral of Lkn
over AC

n ð
AC

n

LkndmRmðAC
n ÞR1=m

n ZLKdVC
n R

1=m
n : ð2:9Þ

Together with the relation
Ð
AC

n
Lkndm%hLkni%Rn we have

mðAC
n Þ%RKð1=mÞC1

n : ð2:10Þ

Hence mðAC
n Þ is significantly smaller than unity and decreases as Rn increases.

Thus AC
n can fill, at most, a small fraction of U.
3. Scaling exponents

To estimate the fractal or Hausdorff dimensions of the set AC
n in a precise set-

theoretic sense requires more information than is available. However, something
very close to this can be found by estimating scaling exponents; see Hentschel &
Procaccia (1983) and Frisch (1995). This entails making a third assumption
of self-similarity to estimate the smallest number of balls NC

n of radius lCn needed
to cover AC

n . Defining lCn as

ðlCn ÞK1hkCn Z hkpni1=p; ð3:1Þ

for some pO1, it is clear that kCn cannot be large enough when pZ1 because of
equation (2.2). However, any value1 of p[1 will do that makes kCn large enough
1 As p/N, hkpni1=p/supU kn, which certainly lies within AC
n . The p -labelling of kCn is suppressed.
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5Cluster formation
to be a member of AC
n . The simplest and worst estimate would be to write

NC
n wðL=lCn Þd : ð3:2Þ

Inequality (2.10), however, shows that AC
n occupies only a small fraction of U.

A multiplicative factor of mðAC
n Þ is introduced thus

NC
n wmðAC

n ÞðL=lCn Þd ZmðAC
n ÞðLkCn Þd : ð3:3Þ

Instead of using equation (2.10) to estimate mðAC
n Þ, an assumption of self-similar

scaling is introduced that requires that the change in volume of the balls with
respect to n should scale as VC

n scales to Ld. Thus

mðAC
n Þw

VC
n

Ld
w

lCnC1

lCn

� �d

: ð3:4Þ

We observe that the definition of the set AC
n in principle involves the length

scales L and lCn , but not overtly lCnC1. Yet the good and bad sets involve all
three scales; L, lCn and lCnC1. The self-similarity assumption (3.4) is an
assumption about the nature of the set AC

n that relates successive length
scales lCn and lCnC1 in an ad hoc, yet reasonable fashion. Using equation (3.4)
in (3.3) we have

NC
n w

lCnC1

lCn

� �d
L

lCn

� �d

Z
ðLnk

C
n Þ2d

ðLnk
C
nC1Þ

d
Rd=m

n : ð3:5Þ

From these, two estimates for NC
n emerge, one each for the grey halo and black

kernel regions of figure 1, whose scaling exponents2 are independent of p

NC
n (

ðLnk
C
n Þdð1KmÞR

d=m
n ðgrey halosÞ;

ðLnk
C
n ÞdRd=m

n ðblack kernelsÞ:

8<
: ð3:6Þ

For the halos, the O direction of the inequality in equation (2.7) has been used
together with a simple Hölder inequality

hkpð1CmÞ
n i1=pRhkpnið1CmÞ=p Z ðkCn Þ1Cm; ð3:7Þ

whereas for the kernels kn%knC1 has been used. In contrast, without any evidence
of contraction of volume, the formula corresponding to equation (3.3) for NK

n is

NK
nwðL=lKnÞd Z ðLnk

K
n ÞdRd=m

n ; ð3:8Þ
where kKn satisfies Lnk

K
n%1. The uniform scaling exponents in equation (3.6)

satisfy (table 1)
DC

n;halo%dð1KmÞ DC
n;ker%d; ð3:9Þ

whereas DKZd from equation (3.8). The coefficients R
d=m
n in equations (3.5)–(3.8)

reflect the fact that this effect is taking place only at length scales smaller than
LR

K1=m
n where the better lower bound ðLnknÞm becomes effective in equation (2.7).

The grey halo clearly plays the role of an interface of small but finite thickness
2 Since we expect NC
n [1, the estimate (3.5) implies that LlCnC1[ðlCn Þ2. This is consistent with

knOLK1 as in equation (2.1) but technically imposes an additional constraint.
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Table 1. Summary regarding the sets AG
n and the regions in figure 1

figure 1 black grey white

set AC
n AC

n AK
n

inequality (2.7) !(bad) R(good) R(good)
exponent %d %d(1Km) Zd
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between the d -dimensional (white) outer region and the (black) inner kernel
whose dimension can be as high as d but could be less; figure 2 illustrates the
correspondence between a kernel with its halo and the magnitude of Lkn. The full
system, with many clusters, would manifest many excursions away from the
ensemble average that would dominate the intermittent structure. When DC

n;ker
saturates its upper bound we have

DC
n;halo%dð1KmÞ!DC

n;ker Z d: ð3:10Þ

For any system in question, a numerical experimentwould be necessary to estimate
the Rn by finding the maximum value of the ensemble average hkni. In
principle m could then be found from numerical estimates of ‘critn wLR

K1=m
n within

the black kernels, although if the kn take very large values there it might not be
possible to achieve resolution. m itself may have upper and lower bounds that are
themselves n-dependent, as in Gibbon & Doering (2003, 2005).
4. Some final remarks

The arguments in this paper have revolved around a statistically steady system
with an ensemble average based on a Lebesgue measure. It has been shown that
when a system of this type has an ordered hierarchy of length scales, and ensemble
averages are finite, then intermittency is generally inevitable. Very short length
scales crowd into clusters whose boundaries are fractal-like. This crowding effect
can be illustrated in an alternative way: a Schwarz inequality, in combination with
equation (2.2), yields a lower bound on the ensemble average of ‘n,

h‘niRLRK1
n ; ð4:1Þ

whereas in the black clusters (2.8) shows that there is a point-wise upper bound,

‘n!LRK1=m
n : ð4:2Þ

Comparing the two shows that the length scales within these clusters are verymuch
smaller than the lower bound on the averages expressed in equation (4.1).

Historically, the first ideas on clustering came more than half a century ago
from Batchelor & Townsend (1949) who observed intermittent behaviour in their
high Reynolds number turbulent flow experiments, closely followed by
observations in boundary layers by Emmons (1951). Batchelor & Townsend
(1949) called this phenomenon ‘spottiness’ and suggested that the energy
associated with the small scale components is distributed unevenly in space and
roughly confined to regions which concomitantly become smaller with eddy size
Proc. R. Soc. A



7Cluster formation
(Kuo & Corrsin 1971). Mandelbrot (1974) then suggested that these clustered
sets on which energy dissipation is the greatest might be fractal in nature. In
measurements of the energy dissipation rate in the atmospheric surface layer,
Meneveau & Sreenivasan (1991) interpreted the intermittent nature of their
signals in terms of multi-fractals. A newer generation of experiments measuring
intense dissipation in turbulent flows have been pursued by Zeff et al. (2003).

Standard cascade theories of turbulence (Frisch 1995) are generally
statistically stationary, but there are some significant challenges in applying
the formulation of this paper to time-evolving three-dimensional Navier–Stokes
turbulence. Thin sets of high vorticity and strain, taking on the nature of short-
lived quasi-one-dimensional tubes and quasi-two-dimensional sheets, evolve
rapidly in time (Kerr 1985; Vincent & Meneguzzi 1994; Frisch 1995). To include
time and space in the average h$i means a different measure could be necessary
because of the semi-infinite nature of the time-axis. With the exception of the
paper by Caffarelli et al. (1982) on the Navier–Stokes (potentially) singular set,
methods of analysis are unfortunately not advanced enough to deal with the full
space–time three-dimensional Navier–Stokes equations. Conventional methods
use Sobolev norms to L2-average the velocity field and its derivatives over space
while the pressure is removed by projection (Constantin & Foias 1988; Foias
et al. 2001; Majda & Bertozzi 2002) leaving only time as an independent variable.
Using this approach Gibbon & Doering (2003, 2005) have reached a half-way
stage in this process by showing that an ordered hierarchy of kn(t) can be
constructed for the three-dimensional Navier–Stokes equations that are
comprised of ratios of norms (of derivatives of order n). Because the kn(t) are
functions only of time, h$i means time-average. The clusters of figure 1 appear as
gaps in the time-axis, as in figure 2, although conclusions about the halos would
not be applicable when time is the only variable. Gibbon & Doering (2005) found
it necessary to prove that these gaps are finite in width and decreasing with
increasing Reynolds number, which involves finding bounds on m.

Thus for time-evolving intermittent systems such as the Navier–Stokes
equations, the challenge is to include both space and time while showing that
these equations also possess a space–time hierarchy of scales. The appearance of
short-lived clusters in numerical computations of the vorticity field suggests that
such hierarchies may exist in local sub-domains of the flow for finite times.

A further example is that of the low-temperature phase of spin glasses
(Sherrington & Kirkpatrick 1975; Mézard et al. 1987). In this case h$i means
ensemble average in the sense defined in this paper. The role played by the
competition between members of a hierarchy of length scales is consistent with
the observation of ultrametricity, a term that is used to denote the presence of a
hierarchy of scales (Mézard et al. 1987; Parisi & Ricci-Tersenghi 2000; Berthier
et al. 2004). This has been observed in computations on the low-temperature spin
glass phases of the Sherrington–Kirkpatrick (Hed et al. 2004) and Edwards–
Anderson models (Stariolo 2001), as well as in dynamic phenomena in
complexity (Boettcher & Paczuski 1996). The results in this paper, particularly
with reference to equation (3.10), are consistent with the droplet theory (Fisher
& Huse 1986; Bray & Moore 1987; Palassini & Young 2000) where the kernel of
the droplet is of full dimension d but its surface has a scaling exponent !d.
Palassini & Young (2000) have shown numerically that DC

haloZ2:58G0:02 when
dZ3 and DC

haloZ2:77G0:02 when dZ4.
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The physics behind many clustering phenomena is often difficult to express in
terms of well-posed boundary value problems that can be subjected to rigorous
analysis. Instead, the approach taken in this paper, highlighting the competition
between length scales as the dominant mechanism, may be a useful paradigm in
explaining the behaviour of multi-scale systems.
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