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Abstract

Vorticity dynamics of the three-dimensional incompressible Euler equations are cast into a
quaternionic representation governed by the Lagrangian evolution of the tetrad consisting of
the growth rate and rotation rate of the vorticity. In turn, the Lagrangian evolution of this
tetrad is governed by another that depends on the pressure Hessian. Together these form
the basis for a direction of vorticity theorem on Lagrangian trajectories. Moreover, in this
representation, fluid particles carry ortho-normal frames whose Lagrangian evolution in time
are shown to be directly related to the Frenet-Serret equations for a vortex line. The frame
dynamics suggest an elegant Lagrangian relation regarding the pressure Hessian tetrad. The
equations for ideal MHD are similarly considered.

1 Introductory and historical remarks

Hamilton’s determined concentration on the idea of quaternions is often depicted by mathemat-
ical historians as an obsession. Lord Kelvin wrote that (O’Connor & Robertson 1998)

Quaternions came from Hamilton after his really good work had been done, and
though beautifully ingenious, (they) have been an unmixed evil to those who have
touched them in any way.

Having fallen in and out of fashion over the last century and a half (Tait 1890), quaternions
currently play an important part in the theory of 4-manifolds, through which it has been shown
that the essential physics of particles and fields is governed by geometric principles. Fluid
turbulence is one of the great unsolved problems of modern science. While viscosity plays a
dominant role in the late development of an incompressible turbulent flow through the Navier-
Stokes equations, the inviscid Euler equations determine the early and intermediate dynamics.
The Euler fluid equations are known to be essentially geometrical, so it would not be surprising
if quaternions were helpful in understanding their solutions.

A quaternion can be constructed from a scalar s and a 3-vector r by forming the tetrad1

q = [s, r] that is defined by
q = [s, r] = sI − r · σ , (1.1)

1We avoid the direct nomenclature “4-vector” because of the meaning assigned to this in gauge theories.
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where r ·σ =
∑3

i=1 riσi and I is the 2× 2 unit matrix. {σ1, σ2, σ3} are the Pauli spin matrices

σ1 =

(

0 i
i 0

)

, σ2 =

(

0 1
−1 0

)

, σ3 =

(

i 0
0 −i

)

, (1.2)

that obey the relations σiσj = −δijI − ǫijkσk . A multiplication rule between two tetrads
q1 = [s1, r1] and q2 = [s2, r2] can easily be determined from these properties

q1 ⊛ q2 = [s1s2 − r1 · r2 , s1r2 + s2r1 + r1 × r2] . (1.3)

This shows that quaternions are not commutative, although their associativity is easily demon-
strated. They are found to be extremely useful in modern inertial navigation systems, robotics
& graphics that are specifically designed to control or track rapidly moving objects undergoing
three-axis rotations (Hanson 2006, Kuipers 1999). In fact, Hamilton discovered them in the
context of an algorithm for rotating the telescope in his observatory. If Kelvin were alive today,
he might be forced to revise his negative opinion of their importance.

Given the evidence, it is natural to reformulate Euler vorticity dynamics in terms of quater-
nions, particularly in tracking a fluid particle that carries its own ortho-normal co-ordinate
system. Instead of setting Euler variables in standard function spaces, in which delicate geomet-
ric information might be lost, the principal aim of this paper is to investigate the Lagrangian
evolution of these variables in appropriate quaternionic form in order to preserve their inherent
geometric properties. The language of quaternions thus provides us with an alternative and
unique look at the problem of Euler vortex dynamics. These manipulations are not specifically
dependent upon the nature of the domain D ⊂ R

3 but for those parts of our work where the
direction of vorticity is discussed, the local existence in time of classical solutions is necessary
(Kato 1972). Thus we restrict D to a three-dimensional periodic domain, although other more
general forms of D ⊂ R

3 are also valid (see Majda & Bertozzi 2001). Otherwise our manipula-
tions should be considered to be formal, particularly since Euler data gets rough very quickly.

Three-dimensional Euler vorticity growth is driven by the stretching vector ω · ∇u. This
term plays a fundamental role in determining whether or not a singularity forms in finite time.
Major computational studies can be found in Brachetet al. (1983, 1992); Pumir & Siggia (1990);
Kerr (1993, 2005); Grauer et al. (1998), Pelz (2001) and Hou & Li (2006). The Beale-Kato-
Majda theorem (Bealeet al. 1982) has been the main cornerstone of Euler analysis : one version
of this theorem is the precise statement that

∫ t

0 ‖ω‖L∞(D)dτ must be finite to prevent singular
behaviour on D. A BMO-version of this theorem has been proved by Kozono and Taniuchi
(2000). However, it has become clear that not only the magnitude but also the direction of
vorticity is important. The papers by Constantin (1994), Constantin et al. (1996), Cordoba &
Fefferman (2001), Deng et al. (2004, 2005) and Chae (2003, 2005, 2006) are variations on this
theme. References and a more global perspective on the Euler equations can be found in the
book by Majda and Bertozzi (2001). Shnirelman (1997) has constructed very weak solutions
which have some realistic features but whose kinetic energy monotonically decreases in time
and which are everywhere discontinuous and unbounded. For work on Euler limits see Brenier
(1999, 2000) and for its dynamics in the more exotic function spaces see the papers by Tadmor
(2001) and Chae (2003, 2004).

The new results in this paper displayed in Sections 1-6 can be summarized as follows.
A well-known variable is the scalar growth rate α = ω̂ · Sω̂ (Constantin 1994). Associated

with this is the 3-vector rotation or swing rate χ = ω̂ × Sω̂ , where ω̂ is the unit vorticity and
S = 1

2
(ui,j+uj,i) is the strain matrix. Together these form a natural tetrad2 q = [α, χ]. Theorem

2In Gibbon (2002) q = [α, χ] was denoted as ζ . The change of notation to Gothic variables for tetrads has
been introduced to avoid confusion between these and 3-vectors.
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1 of §2 shows that the Lagrangian advection equation for the vorticity tetrad w = [0, ω] can
then be written as

Dw

Dt
= q ⊛ w . (1.4)

All these quaternionic variables are Eulerian variables ; i.e., point-wise functions of space and
time, but undergoing Lagrangian evolution in time.

The tetrad q satisfies its own Lagrangian advection equation driven by the effect of the
pressure Hessian P = {p,ij} through the variables αp = ω̂ · P ω̂ and χp = ω̂ × P ω̂. Together
these also form a natural tetrad qp = [αp, χp]. Figure 1 shows how Sω, Pω and the three
orthonormal vectors (ω̂, χ̂, ω̂ × χ̂) are related. In addition to (1.4), Theorem 1 also contains
the results for the Lagrangian advection of q and qp. Simply stated this is

Dq

Dt
+ q ⊛ q + qp = 0 . (1.5)

The result in (1.5) enables us to prove a Theorem in §2 on the direction of vorticity based on
Lagrangian trajectories : “Provided ‖χp‖L∞(D) is integrable in time up to t∗ > 0 on a periodic
domain D, no Euler singularity is possible at t∗, with the exception of the case where ω̂ becomes
collinear with an eigenvector of P at t∗”. Although different in detail, this result is in the same
style as the direction of vorticity theorems cited above and is directly a variation of the BKM
theorem. Ohkitani and Kishiba (1995) have observed in computations that at maximum points
of enstrophy, ω becomes collinear with the most negative eigenvector of P . Collinearity may
therefore be an important process in vorticity growth. The pressure Hessian P and its interplay
with the strain matrix S has appeared in the Euler and Navier-Stokes literature in various places;
see the references in Galanti et al. (1997), Majda and Bertozzi (2001) and Chae (2006).

At each point in space-time a fluid particle carries its own ortho-normal co-ordinate system
(ω̂, χ̂, ω̂×χ̂) : see Figure 1. Explicit equations for Lagrangian time derivatives of this frame are
given in §3. The corresponding Darboux vector is the particle rotation rate. The frame-equations
are then shown to be directly related to the Frenet-Serret relations of differential geometry that
govern the curvature and torsion of a vortex line through the arc-length derivative of its tangent,
principal unit normal and bi-normal. Using Ertel’s Theorem, explicit differential equations for
the curvature and torsion are then found.

It is shown in §4 how to find Lagrangian differential equations for αp and χp. The relation
between qp and q is given in Theorem 3 where they are shown to satisfy

Dqp

Dt
= q ⊛ qp + P . (1.6)

P is a tetrad linear in q and qp whose arbitrary scalar coefficients, in principle, are determined
by the Poisson pressure relation.

The vorticity vector-field ω · ∇ is frozen into the Euler flow. Any system with a frozen-in
vector-field will also have an associated form of Ertel’s Theorem, and a corresponding tetrad
q = [α, χ]. Thus the Lagrangian-quaternionic format displayed in this paper is more generally
applicable, as illustrated by the equations for ideal MHD in §5. Two time-clocks and two tetrads
q± = [α±, χ±] appear as a result because of the two Lagrangian derivatives that naturally arise
through the use of Elsasser variables.

Previous attempts at formulating Euler vorticity dynamics using quaternions have met with
only partial success. Past results have appeared in reverse order : the relations between α and
χ to be displayed in Theorem 1 were derived first by Galanti et al. (1997) (see also Gibbon
et al. 2000), which were then shown to be expressible in a quaternionic form (Gibbon 2002).
That story was incomplete, however, because the Lagrangian advection equation for w was
missing, as were the ideas on particle frame dynamics, the pressure relation (1.6), and results
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on the direction of vorticity. Roubtsov & Roulstone (1997, 2001) have also formulated semi-
geostrophic theory in terms of quaternions.

2 Vorticity dynamics in quaternion form

6

ω̂

@
@

@ISω

���1
ω̂ × χ̂

- χ̂

6

ω̂

J
J

JJ]
Pω

Q
QQs χ̂p

���: ω̂ × χ̂p

Figure 1: A vortex line with unit tangent vorticity vector ω̂. The normal vectors χ = ω̂ × Sω̂ and

χp = ω̂×P ω̂ are defined in (2.9) & (2.10). Thus the three unit vectors [ω̂, χ̂, ω̂×χ̂] form an ortho-normal

co-ordinate system. Moreover, ω̂, Sω and ω̂ × χ̂ are co-planar, as are ω̂, Pω and ω̂ × χ̂p.

In their vorticity form, the three-dimensional incompressible Euler equations are

Dω

Dt
= ω · ∇u = Sω , (2.1)

where the strain matrix is written as S = 1

2
(ui,j + uj,i) and ω = curlu is the vorticity (Majda

and Bertozzi 2001). Equation (2.1) arises from taking the curl of the Euler equations in their
velocity formulation

Du

Dt
= −∇p , div u = 0 , (2.2)

in which the Lagrangian (material) derivative is defined as

D

Dt
=
∂

∂t
+ u · ∇ . (2.3)

The vorticity can be expressed as a tetrad by taking the quaternionic curl of U = [0, u]

∇ ⊛ U = [−divu, curlu] . (2.4)

Thus there exists a natural vorticity tetrad w has the divergence-free constraint built into it

w = [0, ω] . (2.5)

The results in this paper employ Ertel’s theorem, which is widely used in geophysical fluid
dynamics in the study of potential vorticity : see Hide (1983, 2004) and Hoskins, et al. (1985).
More generally it applies to any fluid system whose flow preserves a vector field, as the Euler
equations preserve ω · ∇. For the extensive history behind this result, which seems to have
originated with Cauchy, see Truesdell & Toupin (1960), Kuznetsov and Zakharov (1997) and
Viudez (1999). The most general form of Ertel’s Theorem says that if ω satisfies (2.1) then for
an arbitrary differentiable vector θ

D

Dt
(ω · ∇θ) = ω · ∇

(

Dθ

Dt

)

. (2.6)
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The choice of θ as the Euler velocity field u (Ohkitani 1993) implies that the vortex stretching
vector ω · ∇u = Sω is governed by

D(Sω)

Dt
= −Pω , (2.7)

where P = {p,ij} =
{

∂2p/∂xi∂xj

}

is the Hessian matrix of the pressure. Thus the combination
of (2.1) and (2.7) gives Ohkitani’s relation (Ohkitani 1993)

D2ω

Dt2
+ Pω = 0 . (2.8)

To understand how the direction in which the vorticity vector stretches (compresses) in relation
to its growth rate requires an understanding of its relationship with the matrices S and P . The
scalar and vector variables α and χ are defined by

α = ω̂ · Sω̂ , χ = ω̂ × Sω̂ , (2.9)

αp = ω̂ · P ω̂ , χp = ω̂ × P ω̂ . (2.10)

The left part of Figure 1, based upon Sω̂, shows the ortho-normal co-ordinate system ω̂, χ̂ and
ω̂ × χ̂; the right hand part of the figure shows the same figure with S replaced by P . Thus Sω̂

can be decomposed into its components along the two orthogonal vectors ω̂ and χ × ω̂

Sω̂ = α ω̂ + χ × ω̂ . (2.11)

From (2.1) and (2.11), the Lagrangian derivatives of |ω| and ω̂ are given by

D|ω|

Dt
= α |ω| ,

Dω̂

Dt
= χ × ω̂ . (2.12)

The quantities (α, χ) are respectively the rates of change in vorticity magnitude and direction;
that is, one may call respectively call α and χ the stretching rate3 and the rotation or swing
rate. These variables form natural tetrads associated with w = [0, ω]

q = [α ,χ] , qp =
[

αp ,χp

]

. (2.13)

The following theorem shows how Euler vorticity dynamics can be formulated using quaternions.

Theorem 1 [Euler vorticity dynamics in terms of quaternions:] The vorticity tetrad
w(x, t) satisfies the relation

Dw

Dt
= q ⊛ w , (2.14)

while Ohkitani’s relation (2.8) becomes

D2w

Dt2
+ qp ⊛ w = 0 . (2.15)

The tetrad q(x, t) satisfies the compatibility relation (Riccati equation)

Dq

Dt
+ q ⊛ q + qp = 0 . (2.16)

3α and αp are Rayleigh quotient estimates for eigenvalues of S and P respectively although they are only exact
eigenvalues when ω aligns with one of their eigenvectors. Constantin (1994) has a Biot-Savart formula for α.
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Remark: In terms of α and χ, the components of (2.16) were originally calculated by an
indirect route in Gibbon (2002), although at that time (2.14) was not yet available. Moreover
the present formulation simplifies the proof.

Proof: (2.14) follows from (2.1) and (2.11) by direct calculation

Dw

Dt
= [0, αω + χ × ω] = [α ,χ] ⊛ [0, ω] = q ⊛ w . (2.17)

Following (2.11) and Figure 1, we have

Pω = αpω + χp × ω ⇒ [0, Pω] = qp ⊛ w . (2.18)

Consequently, Ohkitani’s relation (2.8) implies

D2w

Dt2
=
D

Dt
[0, Sω] = −[0, Pω] = −qp ⊛ w , (2.19)

which is (2.15). Differentiating (2.14) again and using (2.15) gives the compatibility relation

Dq

Dt
⊛ w + q ⊛ (q ⊛ w) + qp ⊛ w = 0 . (2.20)

The result (2.16) in Theorem 1 follows because of the associativity property. �

The meaning of χ now becomes clear. For structures such as straight vortex tubes or flat
sheets, ω aligns with an eigenvector of S and thus χ = 0, in which case α is an exact eigenvalue
of S. The Ricatti equation for q in (2.16) reduces to a simple scalar form. However as soon as
a tube or sheet bends, twists or tangles, χ 6= 0 and the full tetrad is restored. Because all our
variables are functions of (x , t), equations (2.14) and (2.16) govern the vorticity dynamics at all
points and all times in the flow provided solutions remain finite.

The BKM-theorem (Bealeet al. 1984) shows that the time integral
∫ t∗

0 ‖ω‖L∞(D) dτ must be
finite at a time t∗ to rule out singular behaviour. Variations on this theme are the direction
of vorticity theorems expressed in the work of Constantin et al. (1996), Cordoba & Fefferman
(2001), Deng et al. (2004, 2005) and Chae (2006). Chae’s result (his Theorem 5.1) is based
on control of the time integral of ‖Sω̂ · P ω̂‖∞, which is derivable from (2.7). Here, a direct
consequence of Theorem 1 concerns the pressure Hessian and its associated variable χp .

Theorem 2 : On the domain D = [0, L]3per there exists a global solution of the Euler equations,
u ∈ C([0, ∞];Hs) ∩ C1([0, ∞];Hs−1) for s ≥ 3 if, for every t∗ > 0

∫ t∗

0
‖χp‖L∞(D) dτ <∞ , (2.21)

excepting the case where ω̂ becomes collinear with an eigenvector of P at t∗.

Remark: The theorem does not imply that blow-up occurs when collinearity does; it simply implies
that under condition (2.21) it is the only situation when it can happen. Ohkitani (1993) and Ohkitani
and Kishiba (1995) have noted the collinearity mentioned above; they observed in Euler computations
that at maximum points of enstrophy, ω tends to align with the eigenvector corresponding to the most
negative eigenvalue of P .

Proof: Consider the relation for q in Theorem 1 in (2.16) expressed in α–χ components

Dα

Dt
= χ2 − α2 − αp

Dχ

Dt
= −2αχ− χ̂ · χp (2.22)
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where α = α(x, t) and χ(t) = χ(x, t). From (2.11) we know that

|Sω̂|2 = α2 + χ2 (2.23)

and so
D|Sω̂|

Dt
≤ −α|Sω̂| +

|α||αp| + |χ||χp|

(α2 + χ2)1/2
. (2.24)

Because D|ω|/Dt = α|ω| from (2.12), the magnitude of vorticity |ω| cannot blow-up for α < 0. Thus
our concern is with α ≥ 0. Inequality (2.24) becomes

D|Sω̂|

Dt
≤ |αp| + |χp| . (2.25)

Integrating along bounded Lagrangian trajectories X(t,x0) that satisfy Xt = u(X(t,x0), t), we have

Sω(X(t,x0), t) = Sω(X(0,x0), 0) +

∫ t

0

(

|αp(X(τ,x0), τ)| + |χp(X(τ,x0), τ)|
)

dτ . (2.26)

When there is no collinearity between ω̂ and P ω̂, the assumption of point-wise in space integrability in
time of χp in (2.21) also extends to αp. Thus ‖Sω̂‖∞ is bounded if (2.21) holds and, in consequence,
so is |ω|. The Beale-Kato-Majda theorem then guarantees regularity of the Euler equations. However,
there still exists the possibility that |P ω̂| could blow up simultaneously as the angle between ω̂ and

P ω̂ approaches zero while keeping χp finite; under these circumstances
∫ t

0 ‖χp‖L∞(D)dτ < ∞, whereas
∫ t

0 ‖αp‖L∞(D)dτ → ∞; thus blow-up would still be theoretically possible. �

3 Lagrangian frame dynamics for particles and the Frenet-Serret equations

3.1 Frame dynamics for particles

The Lagrangian dynamics of the ortho-normal frame (ω̂, χ̂, ω̂ × χ̂) can now be evaluated. Figure 2
illustrates the motion of a particle from one co-ordinate point in space-time to another

t1

•(x1, t1)

6

ω̂

����χ̂

- ω̂ × χ̂

t2

•(x2, t2) �
�
���
ω̂

XXXz

ω̂ × χ̂
���:

χ̂

-
Particle trajectory

��:

Figure 2: Vortex lines at two different times t1 and t2, with the dotted line representing the particle (•)
trajectory moving from (x1, t1) to (x2, t2). The orientation of the ortho-normal unit vectors (ω̂, χ̂, ω̂×χ̂)
is shown at each of the two space-time points.

To find a closed expression for the Lagrangian time derivatives of the ortho-normal set (ω̂, χ̂, ω̂ × χ̂)
requires the derivative of χ̂. To find this it is necessary to use the fact that the 3-vector P ω̂ can be
expressed in this ortho-normal frame as the linear combination

P ω̂ = αp ω̂ + c1χ̂ + c2(ω̂ × χ̂) . (3.1)

where the coefficients c1 and c2 are defined by

c1 = ω̂ · (χ̂ × χp) c2 = − (χ̂ · χp) (3.2)
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The 3-vector product ω̂ × P ω̂ yields

χp = c1(ω̂ × χ̂) − c2χ̂ . (3.3)

The Lagrangian time derivative of χ̂ comes from the 3-vector part of equation (2.16) for the tetrad
q = [α, χ] in Theorem 1

Dχ

Dt
= −2αχ − χp ⇒

Dχ

Dt
= −2αχ+ c2 , (3.4)

where χ = |χ|. Using (3.3) and (3.4) there follows

Dχ̂

Dt
= −c1χ

−1(ω̂ × χ̂) ,
D(ω̂ × χ̂)

Dt
= χ ω̂ + c1χ

−1χ̂ . (3.5)

Thus, according to Euler’s fluid equations, the Lagrangian time derivatives of the ortho-normal set can
be expressed as

Dω̂

Dt
= D × ω̂ (3.6)

D(ω̂ × χ̂)

Dt
= D × (ω̂ × χ̂) (3.7)

Dχ̂

Dt
= D × χ̂ (3.8)

where the “Darboux angular velocity vector” D for the ortho-normal frame is defined as

D = χ −
c1
χ

ω̂ with |D|2 = χ2 +
c21
χ2

. (3.9)

3.2 Frame dynamics and the Frenet-Serret equations

6

ω̂

- ω̂ × χ̂ = n̂�
��3

χ̂ = b̂

Figure 3: The ortho-normal frame (ω̂, ω̂ × χ̂, χ̂) as the Frenet-Serret frame.

With ω̂ as the unit tangent vector, χ̂ as the unit bi-normal b̂ and ω̂ × χ̂ as the unit principal normal n̂,
the matrix F can be formed

F =
(

ω̂T , (ω̂ × χ̂)T , χ̂T
)

, (3.10)

and (3.6)–(3.8) can be re-written as

DF

Dt
= AF , A =





0 −χ 0
χ 0 −c1χ

−1

0 c1χ
−1 0



 . (3.11)

For a space curve parameterized by arc-length s, then the Frenet-Serret equations relating dF/ds to the
curvature κ and the torsion τ of a vortex line are

dF

ds
= BF where B =





0 κ 0
−κ 0 τ

0 −τ 0



 . (3.12)
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It is now possible to relate the t and s derivatives of F given in (3.11) and (3.12). At any time t the
integral curves of the vorticity vector field define a space-curve through each point x: these space curves
are called ‘vortex lines’. The arc-length derivative d/ds is defined by

d

ds
= ω̂ · ∇ . (3.13)

The evolution of the curvature κ and torsion τ of a vortex line may be obtained from Ertel’s theorem in
(2.6), expressed as the commutation of operators

α
d

ds
+

[ D

Dt
,
d

ds

]

= 0 . (3.14)

Applying this to F and using the relations (3.11) and (3.12) gives the Lax pair

αB +
DB

Dt
−
dA

ds
+ [B, A] = 0 . (3.15)

Thus Ertel’s Theorem gives explicit evolution equations for the curvature κ and torsion τ that lie within
the matrix B and relates them to c1 and χ.

Finally we remark that the frame dynamics along each Lagrangian trajectory may be characterized
by a curve in the R2 or C1 plane. For example, one might consider the quantity

ψ(s, t) = |D| exp

(

i

∫ t

[c1χ
−1](s, t′) dt′

)

(3.16)

evaluated along each Lagrangian trajectory. This complex representation of the Darboux vector’s effect
is reminiscent of the Hasimoto transformation

ψ(s, t) = κ(s, t) exp

(

i

∫ s

τ(s′, t) ds′
)

(3.17)

used for representing the propagation of a Kelvin wave along a vortex filament in terms of its induced
curvature and torsion (Hasimoto 1972). Such a representation is potentially useful as a diagnostic for
characterizing frame dynamics in an experimental or computational fluid flow. Thus, because the Darboux
vector has only two components, a representation exists that reduces the description of frame rotation
for each fluid element to a curve in a plane.

4 A Lagrangian advection equation for qp

One of the hurdles in pursuing a Lagrangian approach to the Euler equations is the problem of the non-
locality of the pressure field. Overtly, we have no Lagrangian differential equations for either αp or χp:
the usual numerical procedure is to up-date the pressure through its Poisson equation −∆p = ui,juj,i.
How to address this issue can be illustrated by an example. Differentiating the orthogonality relation
χ · ω̂ = 0 and using the derivative of ω̂ in (2.12) gives

ω̂ ·
Dχ

Dt
= 0 ⇒

Dχ

Dt
= q0 (4.1)

where q0 lies in the plane perpendicular to ω̂ in which χ and χp also lie. Thus q0 = A(x, t)χ+B(x, t)χp ;
independently it is known that A = −2α and B = −1 from (2.16). The same method may be used for
χp by differentiating χp · ω̂ = 0, leading to

Dχp

Dt
= χ × χp + q where q = µχ + λχp (4.2)

where µ = µ(x, t) and λ = λ(x, t) are unknown scalars. Explicitly differentiating χp = ω̂ × P ω̂ in (4.2)
gives

ω̂ (χ · P ω̂) − αpχ + ω̂ ×
D(P ω̂)

Dt
= ω̂ (χ · P ω̂) + q . (4.3)



22nd June 06: http://arxiv.org/abs/nlin.CD/0512034 Quaternions & particle dynamics. . . 10

Using the cross product χ = ω̂ × Sω̂, this can be manipulated into

ω̂ ×

{

D(P ω̂)

Dt
− αp Sω̂

}

= q , (4.4)

which means that
D(P ω̂)

Dt
= αpSω̂ + q × ω̂ + εω̂ (4.5)

where ε = ε(x, t) is a third unknown scalar in addition to µ and λ in (4.2). Thus the Lagrangian derivative
of αp = ω̂ · P ω̂ is

Dαp

Dt
= ααp + χ · χp + ε . (4.6)

Lagrangian differential relations have now been found for χp and αp, but at the price of introducing
the triplet of unknown coefficients µ, λ, and ε which must adjust in a flow to take the Poisson pressure
constraint into account – they cannot be regarded as arbitrary.

Dimensional analysis on the various Euler variables governed by equations4 (4.6) for αp and (4.2) for
χp shows that [ω] = T−1, [α] = T−1, [χ] = T−1, whereas [αp] = T−2, [χp] = T−2. This means that
[λ] = T−1, [µ] = T−2 and [ε] = T−3. Since the Euler equations possess no other time scale µ, λ and ε
must be expressible in terms of these units or their ratios

µ = µ(ω, α, χ, αp, χp) such that [µ] = T−2 , (4.7)

λ = λ(ω, α, χ, αp, χp) such that [λ] = T−1 , (4.8)

ε = ε(ω, α, χ, αp, χp) such that [ε] = T−3 . (4.9)

Now re-define the triplet such that

λ = α+ λ1 , µ = αp + µ1 , ε = −2χ · χp + µ1α+ λ1αp + ε1 (4.10)

where the new triplet is subsumed into the tetrad (the unit tetrad is I = [1, 0])

P = µ1q + λ1qp + ε1I . (4.11)

Theorem 3 [Dynamics of qp] : The pressure tetrad qp = [αp, χp] satisfies

Dqp

Dt
= q ⊛ qp + P , (4.12)

where the triplet of scalar variables µ1, λ1, and ε1 within P(x , t) is determined by the Poisson equation
for the pressure

−TrP = TrS2 − 1

2
ω2 . (4.13)

Remark: It has yet to be understood what effect the Poisson pressure constraint has on the triplet of
scalars µ1, λ1, and ε1 within P. They are not all likely to be zero because, for example, in the simple
case of Burgers vortex α = α0 = const ; αp = −α2

0 ; χ = χp = 0 ⇒ ε1 = α3
0 and λ1 = µ1 = 0.

5 Ideal MHD

As already indicated, these ideas can be pursued for other systems that possess vortex stretching. The
equations of ideal incompressible MHD couple an ideal fluid to a magnetic field B

Du

Dt
= B · ∇B −∇p , (5.1)

DB

Dt
= B · ∇u , (5.2)

4S and P are subsumed into the scalars α, αp, χ and χp so there is no need to consider them separately.
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together with div u = 0 and div B = 0. The pressure p in (5.1) is the combination p = pf + 1
2B

2 where
pf is the fluid pressure. Elsasser variables are defined by combining the u and B fields such that

v± = u ± B . (5.3)

The existence of two velocities v± means that there are two material derivatives (and two time clocks)

D±

Dt
=
∂

∂t
+ v± · ∇ . (5.4)

In terms of these, (5.1) and (5.2) can be rewritten as

D±v∓

Dt
= −∇p , (5.5)

with the magnetic field B satisfying

D±B

Dt
= B · ∇v± ≡ σ± , (5.6)

together with div v± = 0. The σ±-stretching vectors defined in (5.6) obey an Ertel’s relation already
proved in Gibbon (2002)

D±σ∓

Dt
= −PB . (5.7)

The relations in (5.6) thus allow us to define

α± = B̂ · (B̂ · ∇v±) χ± = B̂ × (B̂ · ∇v±) (5.8)

having used Moffatt’s analogy between the vectors ω and B (Moffatt 1978). Moreover, because σ±

defined in (5.6) lie in the plane of the unit vectors B̂ and B̂ × χ̂± we have the decomposition

σ± = α±B + χ± × B . (5.9)

Thus it is easy to prove that

D±|B|

Dt
= α±|B| ,

D±B̂

Dt
= χ± × B̂ , (5.10)

which are the equivalent of (2.12) for the Euler equations. The α± play the role(s) of scalar Elsasser
stretching rates, with χ± as the rotation rates. One may also define corresponding variables based upon
the Hessian matrix P

αpB = B̂ · P B̂ , χpB = B̂ × P B̂ . (5.11)

We define the tetrads q± and qpB as follows

wB = [0, B] , q± =
[

α±, χ±
]

, qpB =
[

αpB , χpB

]

. (5.12)

Theorem 4 The magnetic field tetrad wB satisfies the two relations

D±wB

Dt
= q±

⊛ wB , (5.13)

D∓

Dt

(

D±wB

Dt

)

+ qpB ⊛ wB = 0 . (5.14)

The tetrads q± satisfies the compatibility relation

D∓q±

Dt
+ q±

⊛ q∓ + qpB = 0 . (5.15)
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Proof: The proof of (5.13) follows immediately from (5.6)

D±wB

Dt
=

[

0,
D±B

Dt

]

= [0,σ±] = q±
⊛ wB , (5.16)

where we have used (5.9) at the last step. The proof of (5.14) follows by combining (5.6) and (5.7)
together with the fact that PB lies in the plane of the unit vectors B̂ and B̂ × χ̂pB. Thus we have the
decomposition

PB = αpBB + χpB × B , ⇒ [0, PB] = qpB ⊛ B . (5.17)

The proof of (5.15) follows as a compatibility relation between (5.13) and (5.14). �

Finally MHD-Lagrangian frame dynamics, in the spirit of §3, needs to be interpreted in terms of two
sets of ortho-normal vectors B̂, χ̂±, (B̂ × χ̂±) acted on by their opposite Lagrangian time derivatives.
After some calculation we find the equivalent of (3.6)–(3.8) and (3.9) is

D∓B̂

Dt
= D∓ × B̂ , (5.18)

D∓

Dt
(B̂ × χ̂±) = D∓ × (B̂ × χ̂±) , (5.19)

D∓χ̂±

Dt
= D∓ × χ̂± , (5.20)

where the pair of Elsasser Darboux vectors D∓ are defined as

D∓ = χ∓ −
c∓1
χ∓

B̂ , c∓1 = B̂ · [χ̂± × (χpB + α±χ∓)] . (5.21)

6 Summary

The tetrad reformulation of Euler’s equations in this paper appears to be completely natural, giving
results that are remarkably simple in their expression. It also provides a new hybrid picture of ideal
fluid dynamics in which the Lagrangian fluid parcels carry ortho-normal frames, whose rotation velocity
depends on the local Eulerian values of the pressure and vorticity. These frames are defined by three
ortho-normal vectors: (a) along the vorticity; (b) along its rate of change following the Lagrangian
trajectory; and (c) along the cross product of these two unit vectors. This frame is governed by the
Darboux vector that has components that lie only in the χ̂–ω̂ plane.

Remarkably, a picture similar to that for Euler fluids also emerges for magnetic fluids described by the
ideal MHD equations. The MHD equations have two characteristic velocities, corresponding to the two
Elsässer variables. Thus, MHD-Elsasser variables summon two Lagrangian characteristics along which
the evolutionary equations reduce to ortho-normal frame dynamics. Instead of being attached to the
vorticity vector, both of these MHD frames are attached to the magnetic field vector (Moffatt 1978).
The second vector in each moving frame is obtained by the rate of change of magnetic field along the
Elsasser characteristic. The two frames are then completed by taking the cross product of the first two
unit vectors in each frame. Again the rates of rotation of these Elsasser frames depends on local Eulerian
properties and the respective Darboux angular velocity vectors have only two components in each frame.

An interesting direction of future work would be to numerically monitor the tetrads q and qp to see
how close the relations between them are adhered to. To remind the reader of the relation between them,
we proved in Theorem 1 that q satisfies

Dq

Dt
+ q ⊛ q + qp = 0 , (6.1)

and in Theorem 3 it was shown that if the triplet of scalars is chosen in a certain way then qp satisfies

Dqp

Dt
= q ⊛ qp + P , (6.2)

where P is the tetrad, linear in q and qp, defined in (4.11). Eliminating qp between (6.1) and (6.2) gives

D2q

Dt2
+
Dq

Dt
⊛ q + P = q ⊛ q ⊛ q , (6.3)
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which is not a completely closed because of the triplet of coefficients µ1, λ1, ε1 in P and the need to
respect the Poisson equation. Through this, the vorticity is related to P and S by

1

2
ω2 = Tr(P + S2) =

3
∑

i=1

[

λ
(i)
P +

(

λ
(i)
S

)2
]

. (6.4)

The associated eigenvectors of P and S project onto the the ortho-normal frame (ω̂, χ̂, ω̂ × χ̂) to yield
the coefficients α, χ, αp, c1 and c2. In this ortho-normal basis P has six components

P =





αp c1 c2
c1 β c3
c2 c3 γ



 , (6.5)

but for the present formulation, only αp, c1 and c2 are required from P with α = ω̂ · Sω̂ and χ =
(ω̂ × χ̂) · Sω̂.

An alternative way of looking at the coupling between q and qp is to define the ±-operators as
D±

q = D ± q⊛, where D = D/Dt. Then (2.14), (6.1) and (6.2) can be written as

D−
q w = 0 , D+

q q = −qp , D−
q qp = −P , (6.6)

from which we conclude that D−
q D+

q q = P.

Finally, recent developments in experimental and numerical capabilities also address the hybrid La-
grangian and Eulerian descriptions of fluid dynamics while theoretical developments include the La-
grangian averaged Navier-Stokes-alpha equations. The latter have been reviewed in Holm et al. (2005).
The implications for Lagrangian averaging of the hybrid picture of rotating frames in ideal fluids pre-
sented here will be discussed elsewhere but we note that the rotating frame representation may suggest
a natural decomposition into fast and slow variables involving rapid rotations with slow modulations.
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