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My visit to the SISSA Institute took place for one month, from 14 October
to 14 November 2007. The host laboratory was the Sector of Mathematical
Physics of SISSA (Head — Prof.B.Dubrovin).

The visit has been aimed to study a critical behavior near the point of
“gradient catastrophe” of the solution to the Cauchy problem for the focusing
nonlinear Schrodinger equation

2
. €
Zewt + 577/)1:1: + |@/)|2¢ =0

with analytic initial data of the form ¥ (xz,0;¢) = A(z) e<5®). Namely, as it
was proved in [1], the leading term of the asymptotics is described by the
tritronquée solution to the Painlevé-1 equation. It is defined as the solution
of the ODE

UCC == 6u2 — C,

which does not have poles in the sector |arg(| < 4w /5 for sufficiently large
|C|. This solution has been distinguished long ago by P.Boutroux [2] in
connection with analytic theory of nonlinear ODEs in the complex plane.

The authors of [1] posed a conjecture that tritronquée solution to the
Painlevé-1 equation has no poles in the sector |arg (| < 47 /5. This was con-
firmed both by numerical modelling and by the study of nonlinear Schrodinger
approximations. During my visit, we have found new confirmations of this
conjecture and outlined a way of a strict proof.

First, an effective algorithm for the Padé approximation has been written
in “Mathematica” symbolic package. It constructs the main diagonal Padé
rational approximation for any solution of Painlevé - I equation, defined by
the initial conditions at the origin. The initial conditions for the tritronquée
solution, found previously in [3], have been checked and improved up to 64
digit accuracy. Then, apllying the Padé approximation algorithm, the co-
ordinates of poles were found as shown in Figure 1. The picture shows the
level lines |u(¢)| = 3 with the help of ContourPlot procedure of “Mathemat-
ica”. Green lines correspond to the rays |arg(| = 2mn/5, n =1,...,5. All
the poles are situated in sector 47 /5 < |arg(| < 67/5, which confirms the
conjecture of the paper [1].
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Figure 1: Level lines of the tritronquée solution |u(¢)| on the complex plane
¢ near the origin.

Second, the Padé approximation has confirmed the position of the nearest
to the origin pole as (; = —2.3841687..., which is in line with the result of
[3]. On the other hand, the asymptotic distribution of poles at infinity found
in [4], seems to be in good approximation with Padé approximation, starting
from |¢] > 10.

Third, we found a way to prove the conjecture stated in [1]. The idea of
proof is based on the Isomonodromy Deformation Method, described in [5].
In this method, the tritronquée solution is fixed by the monodromy data of an
auxiliary linear system of ODEs. Assuming ( to be a pole of €2 in forbidden
sector |arg (| < 67/5, we come to a standard Sturm-Lioville problem on the
real axis for the second order ODE with polynomial potential. Then, if this
problem has no solution, so is the inverse monodromy problem for €(¢). This
contradiction will prove the non-existence of poles in the forbidden sector.
The similar construction for the case of Painlevé - II equation has been
studied in Chapter 10 of the book [5].

We plan to write a joint paper, describing the above results, with prof.
B.Dubrovin and Dr. T.Grava. I wold like to thank them for helpful discus-
sions and hospitality during my visit to SISSA.
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