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Abstract. There is developed a symplectic approach for partial solving the
problem of algebraic-analytical construction of integral submanifold imbed-

dings for integrable via the abelian and nonabelian Liouville-Arnold theorems

Hamiltonian systems on canonically symplectic phase spaces. The funda-
mental role of so called Picard-Fuchs type equations is revealed and their

differential-geometric and algebraic properties are studied in detail. Some in-
teresting examples of integrable Hamiltonian systems demonstrating the al-

gorithm of investigating the integral submanifolds imbedding mapping are

studied in detail. The canonical reduction method on canonically symplectic
manifolds is analized in detail, the relationships with the geometric properties

of associated principal fiber bundles endowed with connection structures are

stated. Some results devoted to studying geometrical properties of nonabelian
Yang-Mills type gauge field quations are presented. The differential-geometric

and topological structure of Delsarte transmutation operators and associated

with them Gelfand-Levitan-Marchenko type eqautions are studied making use
of the De Rham-Hodge-Skrypnik differential complex. The relationships with

spectral theory and special Berezansky type congruence properties of Del-

sarte transmuted operators are stated. Some applications to multidimensional
differential operators are done including three-dimensional Laplace operator,

two-dimensional classical Dirac operator and its multidimensional affine ex-
tension, related with self-dual Yang-Mills eqautions. The soliton like solutions

to the related set of nonlinear dynamical systems are discussed.
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1. The differential geometric analysis of the integral manifold
imbedding mapping problem: the Liouville-Arnold integrability by

quadratures, Picard-Fuchs type equations and Hamilton-Jacobi
separation of variables

Introduction As is well known [1,4,DNF], the integrability by quadratures of a
differential equation in space Rn is a method of seeking its solutions by means
of finite number of algebraic operations (together with inversion of functions) and
”quadratures”- calculations of integrals of known functions.

Assume that our differential equation is given as a Hamiltonian dynamical system
on some appropriate symplectic manifold (M2n, ω(2)), n ∈ Z+, in the form

(1.1) du/dt = {H,u},

where u ∈ M2n, H : M2n →R is a sufficiently smooth Hamiltonian function
[1,4,DNF] with respect to the Poisson bracket {·, ·} on D(M2n), dual to the sym-
plectic structure ω(2) ∈ Λ2(M2n), and t ∈R is the evolution parameter.

More than one hundred and fifty years ago French mathematicians and physicists,
first E. Bour and next J. Liouville, proved the first ”integrability by quadratures”
theorem which in modern terms [33] can be formulated as follows.

Theorem 1.1. Let M2n ' T ∗(Rn) be a canonically symplectic phase space
and there be given a dynamical system(1.1) with a Hamiltonian function H:
M2n×Rt →R , possessing a Poissonian Lie algebra G of n∈ Z+ invariants
H j : M2n×Rt →R, j=1, n, such that

(1.2) {Hi,Hj} =
n∑

s=1

csijHs,

and for all i,j,k =1, n the csij ∈R are constants on M2n×Rt. Suppose further that

(1.3) Mn+1
h =:= {(u, t) ∈M × Rt : h(Hj) = hj , j = 1, n, h ∈ G∗},

the integral submanifold of the set G of invariants at a regular element h∈ G∗, is
a well defined connected submanifold of M×Rt. Then, if :

i) all functions of G are functionally independent on Mn+1
h ;

ii)
∑n

s=1 c
s
ijhs = 0 for all i, j =1, n;

iii) the Lie algebra G = spanR {Hj : M2n×Rt →R: j= 1, n} is solvable, the
Hamiltonian system (1.1) on M2n is integrable by quadratures.

As a simple corollary of the Bour-Liouville theorem one gets the following:
Corollary 1.2. If a Hamiltonian system on M2n =T ∗(Rn) possesses just n∈

Z+ functionally independent invariants in involution, that is a Lie algebra G is
abelian, then it is integrable by quadratures.

In the autonomous case when a HamiltonianH = H1, and invariantsHj :M2n →
R, j = 1, n, are independent of the evolution parameter t ∈R, the involutivity
condition {Hi,Hj} =0 , i, j = 1, n, can be replaced by the weaker one {H,Hj} =
cjH for some constants cj ∈ R, j = 1, n.

The first proof of Theorem 1.1. was based on a result of S. Lie, which can be
formulated as follows.

Theorem 1.3 (S. Lie) Let vector fields Kj ∈ Γ(M2n), j = 1, n, be independent
in some open neighborhood Uh ∈ M2n, generate a solvable Lie algebra G with
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respect to the usual commutator [·, ·] on Γ(M2n) and [Kj ,K] =cjK for all
j = 1, n, where cj ∈R, j = 1, n, are constants. Then the dynamical system

(1.4) du/dt = K(u),

where u ∈U h ⊂ M 2n, is integrable by quadratures.
Example 1.4 Motion of three particles on line R under uniform potential field.
The motion of three particles on the axis R pairwise interacting via a uniform

potential field Q(‖·‖) is described as a Hamiltonian system on the canonically sym-
plectic phase space M = T ∗(R3) with the following Lie algebra G of invariants on
M2n:

(1.5) H = H1 =
3∑

j=1

p2
j/2mj +

3∑
i<j=1

Q(‖qi − qj‖),

(1.6) H2 =
3∑

j=1

qjpj , H3 =
3∑

j=1

pj ,

where (qj , pj) ∈ T ∗(R), j = 1, 3, are coordinates and momenta of particles on the
axis R. The commutation relations for the Lie algebra G are

(1.7) {H1,H3} = 0, {H2,H3} = H3, {H1,H2} = 2H1,

hence it clearly solvable. Taking a regular element h ∈ G∗, such that h(Hj) =
hj = 0, for j = 1 and 3, and h(H2) = h2 ∈ R being arbitrary, one obtains the
integrability of the problem above in quadratures.

1.1. Abelian integrabilty by quadratures. In 1974 V. Arnold proved [4] the
following important result known as the commutative (abelian) Liouville-Arnold
theorem. Theorem 1.5 (J.Liouville-V. Arnold). Suppose a set G of functions
Hj : M2n → R, j = 1, n, on a symplectic manifold M 2n is abelian, that is

(1.8) {Hi,Hj} = 0

for all i, j = 1, n. If on the compact and connected integral submanifold
M n

h={u∈M 2n: h(H j)=hj ∈ R, j=1, n, h∈ G∗} with h∈ G being regular, all
functions : M2n → R, j = 1, n, are functionally independent, then Mn

h is diffeo-
morphic to the n-dimensional torus Tn ' M2n, and the motion on it with respect to
the Hamiltonian H=H 1 ∈ G is a quasi-periodic function of the evolution parameter
t∈ R.

A dynamical system satisfying the hypotheses of Theorem 1.5 is called completely
integrable.
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1.2. Non-abelianIn integrability by quadratures. In 1978 Mishchenko and
Fomenko [2] proved the following generalization of the Liouville-Arnold theorem
1.5:

Theorem 1.6. (A. Mishchenko-A. Fomenko) Assume that on a symplectic man-
ifold (M 2n,ω(2)) there is a nonabelian Lie algebra G of invariants Hj : M ∈R,
j=1, k, with respect to the dual Poisson bracket on M 2n, that is

(1.9) {Hi,Hj} =
k∑

s=1

csijHs,

where all values csij ∈ R, i,j,s =1, k, are constants, and the following conditions are
satisfied:

i) the integral submanifold M r
h:={u∈M 2n:h(H j)=h ∈ G∗} is compact and con-

nected at a regular element h ∈ G∗;
ii) all functions H j:M 2n → R, j=1, k, are functionally independent on M 2n;
iii)the Lie algebra G of invariants satisfies the following relationship:

(1.10) dimG + rankG = dimM2n,

where rankG = dim Gh is the dimension of a Cartan subalgebra Gh ⊂ G. Then the
submanifold Mr

h ⊂ M2n is r = rankG -dimensional, invariant with respect each
vector field K∈ Γ(M 2n) , generated by an element H ∈ Gh, and diffeomorphic to
the r-dimensional torus Tr 'Mr

h, on which the motion is a quasiperiodic function
of the evolution parameter t ∈ R. The simplest proof of the Mishchenko -Fomenko
Theorem 1.6 can be obtained from the well known [3,16] classical Lie-Cartan
theorem.

Theorem 1.7 (S. Lie-E. Cartan) Spose that a point h∈ G∗ for a given Lie
algebra G of invariants H j :M 2n →R, j=1, k, is not critical, and the rank
||{Hi,Hj} : i, j = 1, k|| = 2(n− r) is constant in an open neighborhood U h ∈Rn of
the point {h(Hj) = hj ∈R: j = 1, k}⊂ Rk. Then in the neighborhood (h ◦ H)−1

:U h ⊂ M2n there exist k∈ Z+ independent functions fs : G →R, s = 1, k, such
that the functions Fs := (fs ◦ H) : M2n ∈ R, s = 1, k, satisfy the following
relationships:

(1.11) {F1, F2} = {F3, F4} = ... = {F2(n−r)−1, F2(n−r)} = 1,

with all other brackets {Fi, Fj} = 0, where (i, j) 6= (2s − 1, 2s), s = 1, n− r.
In particular, (k + r − n) ∈ Z+ functions Fj : M2n →R, j = 1, n− r, and
Fs : M2n →R, s = 1, k − 2(n− r), compose an abelian algebra Gτ of new invariants
on M2n, independent on (h ◦H)−1(Uh) ⊂M2n.

As a simple corollary of the Lie-Cartan Theorem 1.7 one obtains the following :
in the case of the Mishchenko-Fomenko theorem when rankG + dimG = dimM2n,
that is r+ k = 2n, the abelian algebra Gτ (it is not a subalgebra of G !) of invari-
ants on M2n is just n = 1/2dimM2n-dimensional, giving rise to its local complete
integrability in (h ◦H)−1(Uh) ⊂ M2n via the abelian Liouville-Arnold theorem 1.5.
It is also evident that the Mishchenko-Fomenko nonabelian integrability theorem
1.6 reduces to the commutative (abelian) Liouville-Arnold case when a Lie algebra
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G of invariants is just abelian, since then rankG = dimG = 1/2 dimM2n = n ∈ Z+

- the standard complete integrability condition.
All the cases of integrability by quadratures described above pose the following

fundamental question: How can one effectively construct by means of algebraic-
analytical methods the corresponding integral submanifold imbedding

(1.12) πh : Mr
h →M2n,

where r = dim rankG, thereby making it possible to express the solutions of an
integrable flow on Mr

h as some exact quasi-periodic functions on the torus Tr 'Mr
h .

Below we show examples of dynamical systems on a symplectic manifold M 4 is
diffeomorphic to the canonically symplectic cotangent phase space T ∗(R2) 'M4.

1.3. Examples. Here we consider some examples of investigations of integral sub-
manifold imbedding mappings for abelian Liouville-Arnold integrable Hamiltonian
systems on T ∗(R2).

1.3.1. The Henon-Heiles system-1. This flow is governed by the Hamiltonian

(1.13) H1 =
1
2
p2
1 +

1
2
p2
2 + q1q

2
2 +

1
3
q31

on the canonically symplectic phase space M4 = T ∗(R2) with the symplectic
structure

(1.14) ω(2) =
2∑

j=1

dpj ∧ dqj.

As is well known, there exists the following additional invariant that commutes
with (2.1):

(1.15) H2 = p1p2 + 1/3q32 + q21q2,

that is {H1,H2} = 0 on the entire space M4.

Take a regular element h ∈ G := {Hj : M4 → R: j = 1, 2}, with fixed values
h(Hj) = hj ∈ R, j = 1, 2. Then the integral submanifold

(1.16) M2
h := {(q, p) ∈M4 : h(Hj) = hj ∈ R, j = 1, 2},

if compact and connected, is diffeomorphic to the standard torus T2 ' S1×S1 owing
to the Liouville-Arnold theorem, and one can find cyclic (separable) coordinates
µj ∈ S1, j = 1, 2, on the torus such that the symplectic structure (2.2) will take
the form:

(1.17) ω(2) =
2∑

j=1

dwj ∧ dµj ,

where the conjugate variables wj ∈ T ∗(S1) , j = 1, 2, on M2
h depend only on

the corresponding variables µj ∈ S1
j , j = 1, 2. In this case it is evident that

the evolution along M2
h will be separable and representable by means of quasi-

periodic functions of the evolution parameters.
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To show this, recall that the fundamental determining equations (2.34) based
on the 1-forms h̄

(1)
j ∈ Λ(M2

h), j = 1, 2, satisfy the identity

(1.18)
2∑

j=1

dHj ∧j h̄
(1)
j =

2∑
j=1

dpj ∧ dqj .

Here

(1.19) h̄
(1)
j =

2∑
k=1

h̄jk(q, p)dqk,

where j = 1, 2. Substituting (1.3.1) into (1.18), one obtains

(1.20) h̄
(1)
1 =

p1dq1
p2
1 − p2

2

+
p2dq2
p2
1 − p2

2

, h̄
(1)
2 =

p2dq1
p2
21 − p2

1

+
p1dq2
p2
1 − p2

2

.

On the other hand, the following implication holds on M2
h ⊂M4 :

(1.21) α
(1)
h =

2∑
j=1

wj(µj ;h)dµj ⇒
2∑

j=1

pjdqj : = α(1),

where we have assumed that the integral submanifold M2
h admits the local coor-

dinates in the base manifold R2 endowed with the canonical 1-form α
(1)
h ∈ Λ(M2

h)
as given in (1.20). Thus, making use of the imbedding πh : M2

h → T ∗(R2) in
the form

(1.22) qj = qj(µ;h) , pj = pj(µ;h) ,

j = 1, 2, one readily finds that the equalities

(1.23) pj =
2∑

k=1

wk(µk;h) ∂µk/∂qj

hold for j = 1, 2 on the entire integral submanifold M2
h .

Substituting (1.22) into (1.19) and using the corresponding characteristic re-
lationships, one obtains after simple but cumbersome calculations the following
differential-algebraic expressions:

(1.24) ∂q1/∂µ1 − ∂q2/∂µ1 = 0, ∂q1/∂µ2 + ∂q2/∂µ2 = 0,

whose simplest solutions are

(1.25) q1 = (µ1 + µ2)/2 , q2 = (µ1 − µ2)/2 .

Using expressions (1.22) one finds that

(1.26) p1 = w1 + w2 , p2 = w1 − w2 ,

where the corresponding two algebraic curves Γ(j)
h , j = 1, 2 are given as

(1.27) w1 =
√
h1 + h2 − 4/3µ3

1, w2 =
√
h1 − h2 − 4/3µ3

2.
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Consequently, one obtains the separable [15] Hamiltonian functions (1.13) and
(1.15) in a vicinity U(M2

h) of the integral submanifold M2
h :

(1.28) h1 =
1
2
w2

1 +
1
2
w2

2 +
2
3
(µ3

1 + µ3
2), h2 =

1
2
w2

1 −
1
2
w2

2 +
2
3
(µ3

1 − µ3
2),

which generate the following separable motions on M2
h ⊂ T ∗(R2) :

(1.29) dµ1/dt := ∂h1/∂w1 =
√
h1 + h2 − 4/3µ3

1,

(1.30) dµ2/dt := ∂h1/∂w2 =
√
h1 − h2 − 4/3µ3

2

for the Hamiltonian (1.13), and

(1.31) dµ1/dx := ∂h2/∂w1 =
√
h1 + h2 − 4/3µ3

1,

(1.32) dµ2/dt := ∂h1/∂w2 = −
√
h1 − h2 − 4/3µ3

2

for the Hamiltonian (1.15), where x, t ∈ R are the corresponding evolution pa-
rameters.

1.3.2. The Henon-Heiles system-2. Analogously, one can show that there exists [28,
29] a similar to (1.24) and (1.25) integral submanifold imbedding for the following
integrable modified Henon-Heiles involutive system:

(1.33) H1 =
1
2
p2
1 +

1
2
p2
2 + q1q

2
2 +

16
3
q31 ,

(1.34) H2 = 9p4
2 + 36q1p2

2q
2
2 − 12p1p2q

3
2 − 2q42(q22 + 6q21) ,

where {H1,H1} = 0 on the entire phase space M4 = T ∗(R2).
Based on considerations similar to the above, one can deduce the following [29]

expressions:

(1.35) q1 = −1
4
(µ1 + µ2)−

3
8
(
w1 + w2

µ1 − µ2
)2,

(1.36) q22 = −2
√
h2/(µ1 − µ2), w1 =

√
2/3µ3

1 − 4/3
√
h2 − 8h1 ,

(1.37) p1 =
1

2
√
−6(µ1 + µ2 + 4q1)

[
−2
√
h2

µ1 − µ2
− µ1µ2 + 4(µ1 + µ2)q1 + 32q21 ],

(1.38) p2 =
√
h2(µ1 + µ2 + 4q1)/(3(µ1 − µ2)) , w2 =

√
2/3µ3

2 + 4/3
√
h2 − 8h1 ,

thereby solving explicitly the problem of finding the corresponding integral subman-
ifold imbedding πh : M2

h → T ∗(R2) that generates separable flows in the variables
(µ,w) ∈ T ∗(M2

h).
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1.3.3. A truncated four-dimensional Focker-Plank Hamiltonian system on T ∗(R2)
and its integrability by quadratures. Consider the following dynamical system on
the canonically symplectic phase space T ∗(R2) :

(1.39)
dq1/dt = p1 + α(q1 + p2)(q2 + p1), dq2/dt = p2,
dp1/dt = −(q1 + p2)− α[q2p1 + 1/2(p2

1 + p2
2 + q22)],

dp2/dt = −(q2 + p1),

 = K1(q, p),

where K1 : T ∗(R2) → T (T ∗(R2)) is the corresponding vector field on T ∗(R2) 3
(q, p), t ∈ R is an evolution parameter, called a truncated four-dimensional Focker-
Plank flow. It is easy to verify that functions Hj : T ∗(R2)→ R, j = 1, 2, where

(1.40) H1 = 1/2(p2
1 + p2

2 + q21) + q1p2 + α(q1 + p2)[q2p1 + 1/2(p2
1 + p2

2 + q22)]

and

(1.41) H2 = 1/2(p2
1 + p2

2 + q22) + q2p1

are functionally independent invariants with respect to the flow (1.39). Moreover,
the invariant (1.40) is the Hamiltonian function for (1.39), that is the relationship

(1.42) iK1ω
(2) = −dH1

holds on T ∗(R2), where the symplectic structure ω(2) ∈ Λ2(T ∗(R2)) is given as
follows:

(1.43) ω(2) := d(pr∗α(1)) =
2∑

j=1

dpj ∧ dqj ,

with α(1) ∈ Λ1(R2) to be the canonical Liouville form on R2 :

(1.44) α(1)(q; p) =
2∑

j=1

pjdqj

for any (q, p) ∈ T ∗(R2) ' Λ1(R2).
The invariants (1.40) and (1.41) commute evidently with each other subject to

the associated Poisson bracket on T ∗(R2) :

(1.45) {H1,H2} = 0.

Thereby, owing to the abelian Liouville-Arnold theorem [1, 3] the dynamical system
(1.39) is completely integrable by quadratures on T ∗(R2), and we can apply the
scheme devised before to the commuting invariants (1.40) and (1.41) subject to the
symplectic structure (1.43). One easily calculates that

(1.46) ω(2) =
2∑

i=1

dHi ∧ h(1)
i ,

where the corresponding 1-forms π∗hh
(1)
i := h̄

(1)
i ∈ Λ1(M2

h), i = 1, 2, are given as

(1.47)
h̄

(1)
1 = p2dq1−(p1+q2)dq2

p1p2−(p1+q2)(q1+p2)−αh2(p1+q2)
,

h̄
(1)
2 = −[(q1+p2)(1+αp2)+αh2]dq1+(p1+α[h2+(q2+p1)( q1+p2)])dq2

p1p2−(q2+p1)(αh2+ q1+p2)
,

and an invariant submanifold M2
h ⊂ T ∗(R2) is defined as

(1.48) M2
h := {(q, p) ∈ T ∗(R2) : Hi(q, p) = hi ∈ R,i = 1, 2}
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for some parameters h ∈ R2 and Based now on expressions (1.48), and (1.31)
one can easily construct functions P̄ij(w;h), i, j = 1, 2, in (1.3.1), defined on
T ∗(M2

h) ' T ∗(⊗2
j=1S1

j ) subject to the integral submanifold imbedding mapping

πh : M2
h → T ∗(R2) in coordinates µ ∈ ⊗2

j=1S1
j ⊂ ⊗2

j=1Γ
(j)
h , which we don’t write

down in detail due to their a bit long and cumbersome form. Having applied then
the criterion (1.20), we arrive at the following compatibility relationships subject
to the mappings q : (⊗2

j=1S1
j )× R2 → R2 and p : (⊗2

j=1S1
j )× R2 → T ∗q (R2) :

(1.49)

∂q1/∂µ1 − ∂q2/∂µ2 = 0, w1∂Lµ/∂w1 − w2∂Lµ/∂w2 = 0,

∂2q1/∂µ2∂h2 + ∂2w2/∂µ2∂h2 = 0,

∂w1/∂h1(∂q1/∂h1) = ∂w2/∂h1(∂q2/∂h1),

w1∂w1/∂h1 − w2∂w2/∂h2 = 0,

∂(w1∂w1/∂h2)/∂h2 − α2∂q1/∂µ1 = 0, ...

and so on,subject to variables µ ∈ ⊗2
j=1S1

j and h ∈ R2. Solving equations like
(1.49) , one can find right away that the expressions

(1.50)

p1 = w1, p2 = w2,
q1 = c1 + µ1 − w2(µ2;h),
q2 = c2 + µ2 − w1(µ1;h),
Lµ(h) = −w1w2,

where cj(h1, h2) ∈ R1, j = 1, 2, are constant, hold on T ∗(M2
h), giving rise to the

following Picard- Fuchs type equations in the form (1.21):

(1.51)

∂w1(µ1;h)/∂h1 = 1/w1,
∂w1(µ1;h)/∂h2 = α2h2/w1,
∂w2(µ2;h)/∂h1 = 0
∂w2(µ2;h)/∂h2 = 1/w2.

The Picard-Fuchs equations (1.51) can be easily integrated by quadratures as fol-
lows:

(1.52)
w2

1 + k1(µ1)− α2h2 − 2h1 = 0,

w2
2 + k2(µ2)− 2h2 = 0,

where kj : S1
j → C, j = 1, 2, are still unknown functions. For them to be

determined explicitly, it is necessarily to substitute (1.50) into expressions (1.40)
and (1.41), making use of (1.52) that amounts to the following results:

(1.53) k1 = µ2
1, k2 = µ2

2

under the condition that c1 = −αh2, c2 = 0. Thereby, we have constructed owing
to (1.52) the corresponding algebraic curves Γ(j)

h , j = 1, 2, in the explicit form:

(1.54)
Γ(1)

h := {(λ,w1) : w2
1 + λ2 − α2h2

2 − 2h1) = 0},

Γ(2)
h := {(λ,w2) : w2

2 + λ2 − 2h2 = 0},
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where (λ,wj) ∈ C× C , j = 1, 2, and h ∈ R2 are arbitrary parameters. Making
use now expressions (1.55) and (1.50), one can construct in explicit form the integral
submanifold imbedding mapping πh : M2

h → T ∗(R2) for the flow (1.39):

(1.55)
q1 = µ1 −

√
2h2 − µ2

2 − αh2
2, p1 = w1(µ1;h),

q2 = µ2 −
√

2h1 − α2h2
2 − µ2

1, p2 = w2(µ2;h),

where (µ,w) ∈ ⊗2
j=1Γ

(j)
h . As was mentioned before in chapter 2, formulas (1.55)

together with explicit expressions (??) make it possible right away to find solutions
to the truncated Focker-Plank flow (1.39) by quadratures, thereby completing its
integrability.

=======================================

2. The Poisson structures and Lie group actions on manifolds with
principal bundle structure

2.1. introduction. It was understood during recent decades that many dynamical
systems of classical physics and mechanics are endowed with the symplectic struc-
tures [1, 3, 2] and associated Poisson brackets. In many such cases the structure
of the Poisson bracket appeard to be canonical and is given on the dual space of
the corresponding Lie algebra of symmetries, being augmented in some cases with
a 2-cocycle, and sometimes having a gauge nature. These observations gave rise
to a deep group-theoretical interpretation of these Poisson structures for many dy-
namical systems of mathematical physics, especially for the completely integrable
ones.

The investigation of dynamical systems possessing a rich internal symmetry
structure is usually carried out in three steps: 1) determining the symplectic struc-
ture (the Poisson bracket), recasting the initial dynamical system into Hamiltonian
form; 2) determining conservation laws (invariants or constants of the motion) in
involution; 3) determining an additional set of variables and computing their evo-
lution under the action of Hamiltonian flows, associated with the invariants.

In many cases the above program is too difficult to realize because of the lack of
regular methods for seeking both symplectic structures and a system of the related
invariants. Thereby, of particular interest there present those dynamical systems
with a deep intrinsic group nature for which there exists a possibility of investigating
their symmetry structure in exact form. The corresponding symplectic manifolds on
which these systems are, in general, pull-backs of the corresponding group actions,
related with the coadjont action of a Lie group G on the dual space G∗ to its Lie
algebra G together with the natural Poisson structure upon them. In many cases
these spaces carry a principle fiber bundle structure and can be endowed with some
connections, playing a very important role for describing the symmetry structure
of related dynamical systems.

2.2. The Lie group actions on Poisson manifolds and the orbit structure.
Let us recall some definitions. The Poisson structure on a smooth manifold M is
given by the pair (M, {., .}), where

(2.1) {., .} : D(M)×D(M)→ D(M),
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is a Poisson bracket mapping onto the space of real-valued smooth functions on M,
satisfying the conditions: 1) it is bilinear and skew-symmetric; 2) it is a differen-
tiation with respect to each of the argument; 3) it obeys the Jacobi identity. Any
function H ∈ D(M) determines the vector field sgrad H (symplectic gradient) for
all f ∈ D(M) via the formula:

(2.2) sgradH(f) := {H, f}.

The vector field sgradH : M → T (M) is called Hamiltonian, with the Hamiltonian
function H ∈ D(M).

A symplectic structure ω(2) on M supplies the manifold M with the Poisson
bracket in the natural manner. For any function H ∈ D(M) the vector field
sgradH : M → T (M) is defined via the rule:

(2.3) isgrad Hω
(2) := −dH, (1.3)

whence
{H, f} := −ω(2)( sgradH, sgrad f )

(2.4)

for all f ∈ D(M), where isgrad fω
(2) := −df by definition.

The Poisson or its associated Hamiltonian structure forms naturally a wider
class than do symplectic ones. It is not hard to convince ourselves that any Poisson
structure {., .} on a manifold M is stratified by symplectic structures.

The next class of Poisson structures appeared to be very important for applica-
tions [36, 5, 2, 45, 39, 44]. Let G be a connected real Lie group, G its Lie algebra
over the field R, and G∗ its linear space dual to G. To each element x ∈ G∗ there
is the associated endomorphism ad x : G → G, ad x(y) := [x, y], y ∈ G, where
[., .] – the Lie structure of the Lie algebra G. To each element X ∈ G there is the
associated automotphism Ad X : G → G via the rule:

(2.5) Ad X : y → dlX∗ ◦ drX(y),

where y ∈ G, dlX and drX are the tangent mappings for left and right translations
on the Lie group G, respectively.

Denote by ad∗ and Ad∗ adjoint mappings to ad and Ad, respectively, on G. Then
for all α ∈ G∗, x, y ∈ G the following identity obtains:

〈 ad∗ x(α), y 〉 := 〈 α, [x, y] 〉,

(2.6)

where 〈., .〉 is the convolution of G∗ with G.
The representation ad∗ of the Lie algebra G and Ad∗ of the Lie group G in the

space End G∗ are called co-adjoint.
Let f ∈ D(G∗); then one can determine the gradient ∇f : G∗ → G∗ via the rule:

(2.7) 〈 m,∇f(α) 〉 := df(α;m) :=
d

dε
f(α+ εm)|ε=0,
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where (α;m) ∈ G∗ × G ∼= T (G∗). The structure of the Poisson bracket on G∗ is
defined as follows:

{f, g}(α) := 〈 α, [∇f(α),∇g(α)] 〉
(2.8)

for any f, g ∈ D(G∗). A proof that the bracket (2.8) is a Poisson bracket, is given
making use of standard [2, 5, 36] considerartions. The corresponding Hamiltonian
vector field for a function H ∈ D(G∗) takes the form:

(2.9) sgradH(α) = ( α; ad∗ ∇H(α)(α) ) ∈ T (G∗),

where α ∈ G∗ is arbitrary. The vector field sgradH(α) is tangent to the orbit Oα(G)
of the Lie group G through an element α ∈ G under the Ad∗-action. These orbits
are symplectic strata of the manifold M . To each element uν := ( α; ad∗ xν(α)) ∈
Tα(Oα) ≡ Vα, ν = 1, 2, define

ωα(u1, u2) := 〈 α, [x1, x2] 〉.

(2.10)

Then obviously, ωα is a symplectic structure on Oα for all α ∈ G∗. Thereby one
obtains that the above symplectic stratification of the Poisson structure (2.1) is
realized by means of Ad∗ G, the expansion in orbits in the space G∗. Notice here
that each orbit Oα(G), α ∈ G∗, is an uniform symplectic submanifold in G∗; i.e.,
the action Ad∗ of the Lie group is symplectic and transitive. The restriction of the
vector field sgradH upon an orbit Oα is defined uniquely via the restriction of the
Hamiltonian function H ∈ D(G∗) upon the orbit Oα(G), α ∈ G∗.

2.3. The canonical reduction method on canonically symplectic spaces
and related geometric structures on principal fiber bundles: introduc-
tory backgrounds. The canonical reduction method in application to many geo-
metric objects on symplectic manifolds with symmetry appears to be very effective
tool for their studying, in particular for finding the effective phase space variables
[5, 36, 37, 38, 39, 43] on integral submanifolds of Hamiltonian dynamical systems
in which they are integrable [5, 36, 2, 48] via the Liouville-Arnold theorem, for in-
vestigating related stability problems [5, 40, 46] of Hamiltonian dynamical systems
under small perturbations and so on.

Let G denote a given Lie group with the unity element e ∈ G and the corre-
sponding Lie algebra G ' Te(G). Consider a principal fiber bundle M(N ;G) with
the projection p : M → N, the structure group G and base manifold N, on which
the Lie group G acts [5, 36, 2, 47] by means of a smooth mapping ϕ : M ×G→M.
Namely, for each g ∈ G there is a group of diffeomorphisms ϕg : M →M, generating
for any fixed u ∈M the following induced mapping: û : G→M, where

(2.11) û(g) = ϕg(u).

On the principal fiber bundle p : (M,ϕ) → N there is assigned [37, 41, 47, 2]
a connection Γ(A) by means of such a morphism A: : (T (M), ϕg,∗) → (G, Adg−1),
that for each u ∈ M the mapping A(u) : Tu(M) → G is a left inverse one to the
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mapping û∗(e) : G → Tu(M) and the mapping A∗(u) : G∗ → T ∗u (M) is a right
inverse one to the mapping û∗(e) : T ∗u (M)→ G∗, that is

(2.12) A(u)û∗(e) = 1, û∗(e)A∗(u) = 1.

As usually, denote by ϕ∗g : T ∗(M) → T ∗(M) the corresponding lift of the map-
ping ϕg : M → M at any g ∈ G. If α(1) ∈ Λ1(M) is the canonical G - invariant
1-form on M, the canonical symplectic structure ω(2) ∈ Λ2(T ∗(M)) given by

(2.13) ω(2) := d pr∗Mα(1)

generates the corresponding momentum mapping l : T ∗(M)→ G∗, where

(2.14) l(α(1))(u) = û∗(e)α(1)(u)

for all u ∈ M. Remark here that the principal fiber bundle structure p : M → N
means in part the exactness of the following two adjoint sequences of mappings:

(2.15) 0← G û∗(e)← T ∗u (M)
p∗(u)← T ∗p(u)(N)← 0,

(2.16) 0→ G û∗(e)→ Tu(M)
p∗(u)→ Tp(u)(N)→ 0,

that is

(2.17) p∗(u)û∗(e) = 0, û∗(e)p∗(u) = 0

for all u ∈ M. Combining (2.17) with (2.12) and (2.14), one obtains such an em-
bedding:

(2.18) [1−A∗(u)û∗(e)]α(1)(u) ∈ range p∗(u)
for the canonical 1-form α(1) ∈ Λ1(M) at u ∈ M. The expression (2.18) means, of
course, that

(2.19) û∗(e)[1−A∗(u)û∗(e)]α(1)(u) = 0

for all u ∈ M. Taking now into account that the mapping p∗(u) : T ∗p(u)(N) →
T ∗u (M) is for each u ∈M injective, it has the unique inverse mapping (p∗(u))−1

upon its image p∗(u)T ∗p(u)(N) ⊂ T ∗u (M). Thereby for each u ∈ M one can define
a morphism pA : (T ∗(M), ϕ∗g)→ (T ∗(N), id) as

(2.20) pA(u) : α(1)(u)→ (p∗(u))−1[1−A∗(u)û∗(e)]α(1)(u).

Based on the definition (2.20) one can easily check that the diagram

(2.21)
T ∗(M)

pA→ T ∗(N)
prM↓ ↓prN
M

p→ N

is commutative.
Let now an element ξ ∈ G∗ be G-invariant, that is Ad∗g−1ξ = ξ for all g ∈ G.

Denote also by pξ
A the restriction of the mapping (2.20) upon the subset Mξ :=

l−1(ξ) ∈ T ∗(M), that is the mapping pξ
A :Mξ → T ∗(N), where for all u ∈M

(2.22) pξ
A(u) :Mξ → (p∗(u))−1[1−A∗(u)û∗(e)]Mξ.

Now one can characterize the structure of the reduced phase space M̄ξ :=Mξ/G
by means of the following simple lemma.
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Lemma 2.1. The mapping pξ
A(u) : Mξ → T ∗(N) is a principal fiber G-bundle

with the reduced space M̄ξ =Mξ)/G being diffeomorphic to T ∗(N).

Denote by < ., . >G the standard Ad-invariant nondegenerate scalar product on
G∗ × G. Based on Lemma 1.1 one derives the following characteristic theorem.

Theorem 2.2. Given a principal fiber G bundle with a connection Γ(A) and an
G invariant element ξ ∈ G∗, then every such connection Γ(A) defines a symplec-
tomorphism νξ : M̄ξ → T ∗(N) between the reduced phase space M̄ξ and cotangent
bundle T ∗(N). Moreover, the following equality

(2.23) (pξ
A)(d pr∗Nβ

(1) + pr∗N Ω(2)
ξ ) = d pr∗Mξ

α(1)

holds for the canonical 1-form β(1) ∈ Λ(1)(N) and α(1) ∈ Λ(1)(M), where Mξ :=
prMMξ ⊂ M, 2-form Ω(2)

ξ ∈ Λ(2)(N) is the ξ -component of the corresponding
curvature 2-form Ω(2) ∈ Λ(2)(M)⊗ G.

Proof. One has that on Mξ ⊂ T ∗(M ) the following expression due to (2.20)
holds:

(2.24) p∗(u)pξ
A(α(1)(u)) := p∗(u)β(1)(prN (u)) = α(1)(u)−A∗(u)û∗(e)α(1)(u)

for any β(1) ∈ T ∗(N), α(1) ∈ Mξ and u ∈ Mξ. Thus we get easily that for such
α(1) ∈Mξ there holds

(2.25) α(1)(u) = (pξ
A)−1β(1)(pN (u)) = p∗(u)β(1))(prN (u))+ < A(u), ξ >G

for all u ∈ Mξ. Recall now that in virtue of (2.21) one gets on Mξ and Mξ the
following relationships:

(2.26) p · prMξ
= prN · pξ

A, pr∗Mξ
· p∗ = (pξ

A)∗ · pr∗N .

Therefore we can write down now that for any u ∈M

pr∗Mξ
α(1)(u) = pr∗Mξ

p∗(u)β(1)(p(u)) + pr∗Mξ
< A(u), ξ >

= (pξ
A)∗pr∗Nβ

(1)(u) + pr∗Mξ
< A(u), ξ >,

whence taking the external differential, one arrives at the following equality:

d pr∗Mξ
α(1)(u) = (pξ

A)∗d(pr∗Nβ
(1))(u) + pr∗Mξ

< d A(u), ξ >

= (pξ
A)∗d(pr∗Nβ

(1))(u) + pr∗Mξ
< Ω(2)(u)), ξ >

= (pξ
A)∗d(pr∗Nβ

(1))(u) + pr∗Mξ
p∗ < Ω(2), ξ > (u)

= (pξ
A)∗d(pr∗Nβ

(1))(u) + (pξ
A)∗pr∗N < Ω(2), ξ > (u)

= (pξ
A)∗[d(pr∗Nβ

(1))(u) + pr∗NΩ(2)
ξ (u)].

When deriving the above expression we made use of the following property satisfied
by the curvature 2-form Ω(2) := dA+A ∧A ∈ Λ2(M)⊗ G :

< dA(u), ξ >G=<dA(u) +A(u) ∧ A(u), ξ >G
− < A(u) ∧ A(u), ξ >G=< Ω(2)(u), ξ >G=

= < Ω(2)(u), Ad∗gξ >G=< AdgΩ(2)(u), ξ >G=

= < Ω(2), ξ > (p(u))G := p∗Ω(2)
ξ (u)
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at any u ∈M, since for any A,B ∈ G there holds < [A,B], ξ >G=< B, ad∗Aξ >G= 0
in virtue of of the invariance condition Ad∗gξ = ξ for any g ∈ G. Thereby the proof
is finished.B

Remark 2.3. As the canonical 2-form d pr∗Mα(1) ∈ Λ(2)(T ∗(M)) is G-invariant
on T ∗(M) due to the construction, it is evident that its restriction upon the
G-invariant submanifold Mξ ⊂ T ∗(M) will be effectively defined only on the
reduced space M̄ξ, that ensures the validity of the equality sign in (2.23).

As a simple but useful consequence of Theorem 1.2 one can formulate the fol-
lowing useful enough for applications results.

Theorem 2.4. Let a momentum mapping value l(α(1))(u) = û∗(e)α(1)(u) = ξ ∈ G∗
has the isotropy group Gξ acting naturally on the subset Mξ ⊂ T ∗(M) invariantly,
freely and properly, so that the reduced phase space (M̄ξ , ω̄

(2)
ξ ) is symplectic, where

by definition [1, 6], for the natural embedding mapping πξ :Mξ → T ∗(M) and the
reduction mapping rξ :Mξ → M̄ξ the defining equality

(2.27) r∗ξ ω̄
(2)
ξ := π∗ξ (d pr∗Mα(1))

holds on Mξ. If an associated principal fiber bundle p : M → N has a structure
group coinciding with Gξ, then the reduced symplectic space (M̄ξ, ω̄

(2)
ξ ) is

symplectomorphic to the cotangent symplectic space (T ∗(N), σ(2)
ξ ), where

(2.28) σ
(2)
ξ = d pr∗Nβ

(1) + pr∗NΩ(2)
ξ ,

and the corresponding symplectomorphism is given by the relation like (2.23) .

Concerning some applications the following criterion can be useful when con-
structing associated fibre bundles with connections related with the symplectic
structure reduced on the space M̄ξ.

Theorem 2.5. In order that two symplectic spaces (M̄ξ, ω̄
(2)
ξ ) and (T ∗(N), d

pr∗Nβ
(1)) were symplectomorphic, it is necessary and sufficient that the element

ξ ∈ ker h, where for G-invariant element ξ ∈ G∗ the mapping h : ξ → [Ω(2)
ξ ] ∈

H2(N ; Z) with H2(N ; Z) being the cohomology group of 2-forms on the manifold
N.

=========================================

3. A new integrable Whitham type nonlinear evolution equation
describing short-wave perturbations in a relaxing medium:

Lagrangian and Hamiltonian analysis

3.1. Introduction. A shortwave perturbations in a relaxing medium can be mod-
eled by means of a Whitham type evolution equation

(3.1) du/dt = 2uux +
∫

R
K(x, s)usds,

discussed first in [50]. Here the kernel K : R × R → R depends on the medium
elasticity properties with spacial memory and can, in general, be a function of the
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pressure gradient ux ∈ C2(R; R), evolving in respect to the equation (3.1). In
particular, if K(x, s) = 1

2 | x− s |, x, s ∈ R, then the equation (3.1) reduces to

(3.2) du/dt = 2uux + ∂−1u,

which was studied before in [51, 52, 49].
Since some media possess elasticity properties depending strongly on the spatial

pressure gradient ux, x ∈ R, the corresponding Whitham kernel looks like

(3.3) K(x, s) := −θ(x− s)us

for x, s ∈ R, naturally modelling the relaxing spacial memory effects. The resulting
equation (3.1) with the kernel () becomes as

(3.4) du/dt = 2uux − ∂−1u2
x := K[u],

which appears to possess very interesting mathematical properties. The latter will
be the main topic of the next sections following below.

3.2. Lagrangian analysis. A more mathematically correct form of the equation
(3.4) looks like

(3.5) uxt = 2(uux)x − u2
x,

being a nonlinear hyperbolic flow on the axis R. Concerning the preceding form
(3.4) it is necessary to define the operation ∂−1 : C(R; R) → C(R; R). If one take
into consideration the class C∞2π(R; R) ⊂ C(R; R) of 2π- periodic solutions to the
equation (3.5), then one can accept that

(3.6) ∂−1(·) :=
1
2
[
∫ x

0

(·)ds−
∫ 2π

x

(·)ds],

satisfying the defining property ∂ · ∂−1 = 1 for all x ∈ [0, 2π]. Thereby, for con-
venience, we will consider the flow (5.4) as that in the periodic smooth functional
manifold M := C∞2π(R; R). The corresponding vector field K : M → T (M) de-
fines on M a dynamical system, which appears to possess both Lagrangian and
Hamiltonian properties.

To demonstrate them in detail, consider the partial differential equation (3.5)
and prove that it is of Lagrangian form, that is

(3.7) uxt = −δHϑ

δu
:= ξ[u],

where Hϑ : M → R is some Fréchet smooth Lagrangian function. For proving
(3.7), following the scheme in [53], it is enough to state only that there holds the
Volterrian identity ξ

′
= ξ

′∗, that is

(3.8) [2(uux)x − u2
x]′ = [2(uux)x − u2

x]′∗,

where the sign ”′” means the Fréchet derivative with respect to the variable u ∈
M and ” ∗ ” means the corresponding conjugation with respect to the natural
scalar product on the tangent space T (M) ' T ∗(M). As a result, there exists a
Lagrangian function Hϑ : M → R in the following explicit form:

(3.9) Hϑ :=
∫ 2π

0

Hϑdx =
∫ 2π

0

uu2
xdx.

Thus, the expression (3.7) can be presented as the Euler equation

(3.10) δL/δu = 0,
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where, by definition,

(3.11) L :=
∫ t

0

∫ 2π

0

(
1
2
uxuτ −Hϑ)dxdτ.

Recall now, that owing to the results in [53], any Lagrangian system in the form
(3.10) is Hamiltonian. To show this, rewrite the action functional (3.11) as

(3.12) L =
∫ t

0

[(ϕ, uτ )−Hϑ]dτ,

where ϕ := (1/2)ux ∈ T ∗(M). Then the condition (3.10) gives rise to the equality

(3.13) ut = −ϑ grad Hϑ = K[u],

where, by definition,

(3.14) ϑ−1 := ϕ′ − ϕ′∗ = ∂/∂x.

As it is easy to see, the operator ϑ := ∂−1 : T ∗(M)→ T (M) is necessary implectic
[53, 65] and with respect to the flow (3.2) also Noetherian. Thus we have stated
the following theorem.

Theorem 3.1. The partial differential equation (3.5) is equivalent on the functional
manifold M to the Hamiltonian flow (3.2) with the Hamiltonian function (3.9) and
co-implectic structure (3.14).

This result means that our flow (3.4) on M , being Hamiltonian, is conservative,
thereby one can expect it possesses also additional hidden conservation laws, which
can be important for its integrability analysis. This assumption, as we shall show
below, appears to hold really.

3.3. Gradient-holonomic analysis. Since any conservation law γ ∈ D(M) sat-
isfies the linear Lax equation

(3.15) dψ/dt+K ′+ψ = 0,

where ψ = grad γ ∈ T ∗(M), under the condition of its existence in the form of
a local functional on M, it can be found for instance, by means of the asymptotic
small parameter method [53]. In particular, one easily gets that expressions

(3.16) ψϑ = uxx, ψη−1 =
1
2
(u2

x − (u)2xx)

satisfy the Lax equation (3.15) and are the gradients of the corresponding function-
als on M , that is

(3.17) ψϑ = grad γϑ ψη−1 = grad γη−1 ,

where

(3.18) γϑ =
1
2

∫ 2π

0

u2
xdx γη−1 =

1
2

∫ 2π

0

uu2
xdx.

Thus, we have stated that our dynamical system (3.4) allows additional invariants
(conservation laws), which can be used within the gradient-holonomic algorithm
[53] for finding new associated nontrivial implectic structures on the manifold M.
Namely, let us represent conservation laws (3.16) in the scalar product form on M
as

(3.19) γϑ = (ϕϑ, ux) γη−1 = (ϕη−1 , ux),
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where

(3.20) ϕϑ =
1
2
ux, ϕη−1 = −1

2
∂−1u2

x ∈ T ∗(M).

Then operators

(3.21) ϑ−1 = ϕ
′

ϑ − ϕ
′∗
η =

1
2
∂ − (−1

2
∂) = ∂,

(3.22) η−1
−1 = ϕ

′

η−1
− ϕ

′∗
η−1

= ∂−1uxx + uxx∂
−1

will be co-implectic [53, 65] on M, and, as it is easy to check, also Noetherian
with respect to our dynamical system (3.4). Moreover, via direct calculations one
can show that the corresponding implectic operators ϑ, η−1 : T ∗(M)→ T (M) are
compatible on M , that is for any λ ∈ R the expression ϑ+λη−1 is implectic too on
M [53, 54]. This means, in particular, that all operators of the form

(3.23) ηn = ϑ(η−1
−1ϑ)n

for n ∈ Z will be implectic too on M. Another consequence from this fact is the
existence of an infinite hierarchy of invariants γn ∈ D(M), n ∈ Z, satisfying the
expressions

(3.24) K[u] = −ηn grad γn.

As a particular case one can define an implectic operator η : T ∗(M) → T (M) in
the form

(3.25) η = ϑη−1
−1ϑ = ∂−2uxx∂

−1 + ∂−1uxx∂
−2.

Whence and from (3.24) we obtain that

(3.26) ut = K[u] = −ϑgrad Hϑ = −ηgrad Hη,

where

(3.27) Hϑ =
∫ 2π

0

uu2
xdx, Hη =

∫ 2π

0

u2
xdx.

The expression (3.23) can be rewritten in another useful form as

(3.28) λϑ grad γ(λ) = η grad γ(λ),

being in some sense equivalent [53] together with the equation (3.1) to the adjoint
Lax type representation for the dynamical system

Theorem 3.2. The dynamical system (3.4) on the functional manifold M is a
compatible bi-Hamiltonian flow, possessing an infinite hierarchy of commuting func-
tionally independent conservation laws, satisfying the fundamental gradient identity
(3.28). The latter is equivalent together with the relationship (3.15) to the adjoint
Lax type representation.

An analysis of associated with (3.4) commuting flows Kn := −ϑ grad γn, n ∈ Z,
shows an interesting property of their dispersionless. In particular, this means
that all of them can not be treated effectively by means of the gradient-holonomic
algorithm, namely, the asymptotic in | λ |→ ∞ solutions to the Lax equations

(3.29) dϕ/dτn +K ′∗
n ϕ = 0, ϕ′ 6= ϕ′

+
,

where du/dτn = Kn[u], τn ∈ R, n ∈ Z, do not give rise to explicit expressions,
defining the associated hierarchy of conservation laws for the dynamical system
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(3.4). Nonetheless, the corresponding hierarchy of dispersive commuting flows on
M exists for (3.4), being associated with the trivial flow du/dt0 := 0 on M . Namely,
let H0 ∈ D(M) be a conservation law of (3.4), satisfying the kernel condition for
the operator η : T ∗(M)→ T (M), that is

(3.30) du/dt0 = 0 := η grad H0.

It is easy to find from (3.30) and (3.25), that grad H0 = [2(uxx)−1/2]xx, whence

(3.31) H0 = 4
∫ 2π

0

√
uxxdx.

With the obtained invariant (3.31) there is associated the commuting with (3.4)
flow

(3.32) du/dτ = −ϑ grad H0 = uxxx(uxx)−3/2 := K̃[u],

τ ∈ R, which, as it is easy to see, already possesses a nontrivial dispersion. This
means that the Lax equation

(3.33) dϕ/dτ + K̃
′∗ϕ = 0,

allows as |λ| → ∞ an asymptotic solution ϕ := ϕ(λ) ∈ T ∗(M)⊗ C, where

(3.34) ϕ(λ) ' exp(
∫ x

x0

σ(y;λ)dy), σ(x;λ) '
∑

j∈Z+

σj [u]λ−j

with nontrivial functionals Hj :=
∫ 2π

0
σj [u]dx, j ∈ Z+, being commuting con-

servation laws both of the dynamical system (3.32) and of our dynamical system
(3.4).

The obtained results are important for further analytical studying Lax
type integrability of the dynamical system (3.4) and finding, in partic-
ular, its wide class of special soliton like and quasi-periodic solutions.
========================================

4. The generalized de Rham-Hodge theory aspects of Delsarte-Lions
type transmutation operators in multidimension

4.1. Differential-geometric preliminaries. A differential-geometric analysis of
Delsarte-Darboux type transformations for differential operator expressions act-
ing in a functional space H = L2(T;H), where T = R2 and H := L2(R2; C2),
appears to have a deep relationship with the classical de Rham-Hodge theory
[2, 63, 58, 59, 60, 61] devised in the midst of the past century for a set of commut-
ing differential operators defined, in general on a smooth compact m-dimensional
metric space M. Concerning our problem of describing the differential-geometric
and spectral structure of Delsarte-Darboux type transmutations acting in H, we
preliminarily consider some backgrounds of the generalized de Rham-Hodge theory
devised formerly by I.V. Skrypnik [58, 59, 60, 61] for studying special differential
complexes. Consider a smooth metric space M being a suitably compactified form
of the space Rm, m ∈ Z+. Then one can define on MT := T ×M the standard
Grassmann algebra Λ(MT;H) of differential forms on T×M and consider a gener-
alized external anti-differentiation operator dL : Λ(MT;H) → Λ(MT;H) acting as
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follows: for any β(k) ∈ Λk(MT;H), k = 0,m,

(4.1) dLβ(k) :=
2∑

j=1

dtj ∧ Lj(t;x|∂)β(k) +
m∑

i=1

dxi ∧Ai(t;x; ∂)β(k) ∈ Λk+1(MT;H),

where Ai ∈ C2(T;L(H)), i = 1,m, are some differential operator mappings and

(4.2) Lj(t;x|∂) := ∂/∂tj − Lj(t;x|∂)

j = 1, 2, are suitably defined linear differential operators in H, commuting with
each other, that is

(4.3) [L1,L2] = 0, [Ak,Ai] = 0 and [Lj ,Ai] = 0

for all j = 1, 2 and i, k = 1,m.We will put, in general, that differential expressions

(4.4) Lj(t;x|∂) :=
nj(L)∑
|α|=0

a(j)
α (t;x)

∂|α|

∂xα
,

with coefficients a(j)
α ∈ C1(T;C∞(M ;EndCN )), |α| = 0, nj(L) nα

j ∈ Z+, j = 0, 1,
are some closed normal densely defined operators in the Hilbert space H for any
t ∈ T. It is easy to observe that the anti-differentiation of dL defined by (??) is a
generalization of the usual external anti-differentiation

(4.5) d =
m∑

j=1

dxj ∧
∂

∂xj
+

2∑
s=1

dts ∧
∂

∂ts

for which, evidently, commutation conditions

(4.6) [
∂

∂xj
;
∂

∂xk
] = 0, [

∂

∂ts
;
∂

∂tl
] = 0, [

∂

∂xj
;
∂

∂ts
] = 0

hold for all j, k = 1,m and s, l = 1, 2. If now to substitute within (4.5) ∂/∂xj −→
Aj , ∂/∂ts −→ Ls, j = 1,m, s = 1, 2, one gets the anti-differentiation

(4.7) dA :=
m∑

j=1

dxj ∧Aj(t;x|∂) +
2∑

j=1

dts ∧ Ls(t;x|∂),

where the differential expressions Aj ,LS : H −→ H for all j, k = 1,m and s, l = 1, 2,
satisfy the commutation conditions [Aj ,Ak] = 0, [Ls,Ls] = 0, [Aj ,Ls] = 0, then
then operation (4.7) defines on Λ(MT;H) an anti-differential with respect to which
the co-chain complex.

(4.8) H −→ Λ0(MT;H) dA−→ Λ1(MT;H) dA−→ ...
dA−→ Λm+2(MT;H) dA−→ 0

is evidently closed, that is dAdA ≡ 0. As the anti-differential (4.1) is a particular
case of (4.7), we obtain that the corresponding to it co-chain complex (4.8) is
closed too.
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4.2. Rigged Hilbert spaces of differential forms and the related the Hodge
homologies. Below we will follow ideas developed [58, 59, 60, 61]. A differential
form β ∈ Λ(MT;H) will be called dA-closed if dAβ = 0 and a form γ ∈ Λ(MT;H)
will be called exact or dA-homological to zero if there exists on MT such a form
ω ∈ Λ(MT;H) that γ = dAω.

Consider now the standard [63, 2] algebraic Hodge star-operation

(4.9) ∗ : Λk(MT;H) −→ Λm+2−k(MT;H),

k = 0,m+ 2, as follows: if β ∈ Λk(MT;H), then the form ∗β ∈ Λm+2−k(MT;H) is
such that:

• (m−k+2) - dimensional volume |∗β| of the form ∗β equals k-dimensional
volume |β| of the form β;
• the (m+ 2) -dimensional measure β̄ᵀ ∧ ∗β > 0 under the fixed orientation

on MT.
Define also on the space Λ(MT;H) the following natural scalar product: for any

β, γ ∈ Λk(MT;H), k = 0,m,

(4.10) (β, γ) :=
∫

MT

β̄ᵀ ∗ γ.

Subject to the scalar product (4.10) one can naturally construct the corresponding
Hilbert space

(4.11) HΛ(MT) :=
m+2
⊕

k=0
Hk

Λ(MT)

well suitable for our further consideration. Notice also here, that the Hodge star ∗-
operation satisfies the following easily checkable property: for any β, γ ∈ Hk

Λ(MT),
k = 0,m,

(4.12) (β, γ) = (∗β, ∗γ),
that is the Hodge operation ∗ : HΛ(MT) → HΛ(MT) is unitary and its standard
adjoint with respect to the scalar product (4.10) operation satisfies the condition
(∗)′ = (∗)−1.

Denote by d
′

L the formally adjoint expression to the weak differential operation
(4.1). By means of the operations d′L and dL in theHΛ(MT) one can naturally define
[63, ?, ?, 58, 2] the generalized Laplace-Hodge operator ∆L : H1(MT) −→ H1(MT)
as

(4.13) ∆L = d′LdL + d′LdL .

Take a form β ∈ HΛ(MT) satisfying the equality

(4.14) ∆Lβ = 0.

Such a form is called [58, ?] harmonic. One can also verify that a harmonic form
β ∈ HΛ(MT) satisfies simultaneously the following two adjoint conditions:

(4.15) d′Lβ = 0, dLβ = 0

easily stemming from (4.13) and (4.14).
It is easy to check that the following differential operators in HΛ(MT)

(4.16) d∗L := ∗d′L(∗)−1

defines also a new external anti-differential operation in HΛ(MT).
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Lemma 4.1. The corresponding dual to (4.8) co-chain complex

(4.17) H −→ Λ0(MT;H)
d∗L−→ Λ1(MT;H)

d∗L−→ ...
d∗L−→ Λm+2(MT;H)

d∗L−→ 0

is exact.

Proof. A proof follows owing to the property d∗Ld
∗
L = 0 holding due to the definition

(4.16)..
�

4.3. The de Rham-Hodge type isomorphism and the structure of the
Delsarte-Lions operators kernels. Denote further byHk

Λ(L)(MT), k = 0,m+ 2,
the cohomology groups of dL-closed and by Hk

Λ(L∗)(MT), k = 0,m+ 2, k =
0,m+ 2, the cohomology groups of d∗L-closed differential forms, respectively, and by
Hk

Λ(L∗L)(MT), k = 0,m+ 2, the abelian groups of harmonic differential forms from
the Hilbert sub-spaces Hk

Λ(MT), k = 0,m+ 2. Before formulating next results,
define the standard Hilbert-Schmidt rigged chain [67, 68] of positive and negative
Hilbert spaces of differential forms

(4.18) Hk
Λ,+(MT) ⊂ Hk

Λ(MT) ⊂ Hk
Λ,−(MT),

the corresponding hereditary rigged chains of harmonic forms:

(4.19) Hk
Λ(L∗L),+(MT) ⊂ Hk

Λ(L∗L)(MT) ⊂ Hk
Λ(L∗L),−(MT)

and chains of cohomology groups:

Hk
Λ(L),+(MT) ⊂ Hk

Λ(L)(MT) ⊂ Hk
Λ(L),−(MT),(4.20)

Hk
Λ(L∗),+(MT) ⊂ Hk

Λ(L∗)(MT) ⊂ Hk
Λ(L∗),−(MT)

for all k = 0,m+ 2. Assume also that the Laplace-Hodge operator (4.13) is re-
duced upon the space H0

Λ(M)al. Now by reasoning similar to those in [63, 2] one
can formulate a little generalized [59, 60, 61] de Rham-Hodge theorem.
The groups of harmonic forms Hk

Λ,+(MT), k = 0,m+ 2, are, respectively, isomor-
phic to the homology groups (Hk(MT; C))|Σ|, k = 0,m+ 2, where Hk(MT; C) is
the k-th cohomology group of the manifold MT with complex coefficients, a set
Σ ⊂ Cp, p ∈ Z+, is the set of suitable ”spectral” parameters marking the lin-
ear space of independent d∗L-closed 0-form from H0

Λ(L),−(MT) and, moreover, the
following direct sum decompositions

(4.21) Hk
Λ,+(MT) = Hk

Λ(L∗L),+(MT)⊕∆LHk
Λ,+(MT)

= Hk
Λ(L∗L),+(MT)⊕ dLHk−1

Λ,+ (MT)⊕ d′LHk+1
Λ,+(MT)

hold for any k = 0,m+ 2. Another variant of the statement similar to that above
was formulated in [58, 59] and reads as the following generalized de Rham-Hodge
theorem. The generalized cohomology groups Hk

Λ(L),+(MT), k = 0,m+ 2, are
isomorphic, respectively, to the cohomology groups (Hk(MT; C))|Σ|, k = 0,m+ 2.
A proof of this theorem is based on some special sequence [58, 59, 60, 61, 62] of
differential Lagrange type identities.. Define the following closed subspace

(4.22) H∗0 := {ϕ(0)(η) ∈ H0
Λ(L∗),−(MT) : d∗Lϕ

(0)(η) = 0, ϕ(0)(η)|Γ, η ∈ Σ}

for some smooth (m + 1)-dimensional hypersurface Γ ⊂ MT and Σ ⊂ (σ(L) ∩
σ̄(L)) × Σσ ⊂ Cp, where H0

Λ(L∗),−(MT) is, as above, a suitable Hilbert-Schmidt
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rigged[67, 68] zero-order cohomology group Hilbert space from the co-chain given
by (4.20), σ(L) and σ(L∗) are, respectively, mutual generalized spectra of the sets
of differential operators L and L∗ in H at t = 0 ∈ T. Thereby, the dimension
dimH∗0 = card Σ := |Σ| is assumed to be known. The next lemma first stated by
I.V. Skrypnik [58, 59] is of fundamental meaning for a proof of Theorem 1.2.

Lemma 4.2. There exists a set of differential (k+1)-forms Z(k+1)[ϕ(0)(η), dLψ(k)]
∈ Λk+1(MT; C), k = 0,m+ 2, and a set of k-forms Z(k)[ϕ(0)(η), ψ(k)] ∈ Λk(MT; C),
k = 0,m+ 2, parametrized by the set Σ 3 η,being semilinear in (ϕ(0)(η), ψ(k)) ∈
H∗0 ×Hk

Λ,+(MT), such that

(4.23) Z(k+1)[ϕ(0)(η), dLψ(k)] = dZk[φ(0)(η ), ψ(k)]

for all k = 0,m+ 2 and η ∈ Σ.

Proof. A proof is based on the following Lagrange type identity generalizing that
of Part 1 and holding for any pair (ϕ0(η), ψ(k)) ∈ H∗0 ×Hk

Λ,+(MT):

0 = < d∗Lφ
(0)(η), ∗(ψ(k) ∧ γ) >=< ∗d′L(∗)−1ϕ(0)(η), ∗(ψ(k) ∧ γ) >(4.24)

= < ∗d′L(∗)−1φ(0)(x), ψ(k) ∧ γ) >=

= < (∗)−1ϕ(0)(η), dLψ(k) ∧ γ > +Z(k+1)[ψ(0)(η), dLψ(k)] ∧ γ >=

= < (∗)−1ϕ
(0)(η), dLψ(k) ∧ γ > +dZ(k)[ϕ(0)(η), ψ(k)] ∧ γ,(4.25)

where Z(k+1)[ϕ(0)(η), dLψ(k)] ∈ Λk+1(MT; C), k = 0,m+ 2, and
Z(k)[ϕ(0)(η), ψ(k)] ∈ Λk(MT; C), k = 0,m+ 2, are some semilinear differential
forms on MT parametrized by a parameter λ ∈ Σ, and γ ∈ Λm+1−k(MT; C)
is arbitrary constant (m + 1 − k)-form. Thereby, the semilinear differ-
ential (k + 1)-forms Z(k+1)[ϕ(0)(η), dLψ(k)] ∈ Λk+1(MT; C) and k-forms
Z(k)[ϕ(0)(η), ψ(k)] ∈ Λk(MT; C), k = 0,m+ 2, λ ∈ Σ, constructed above
exactly constitute those searched for in the Lemma.. �

Based now on Lemma 1.3 one can construct the cohomology group isomorphism
claimed in Theorem 1.2 formulated above. Namely, following [58, 59], let us take
some singular simplicial [2, 5] complex K(MT) of the compact metric space MT and
introduce a set of linear mappings B(k)

λ : Hk
Λ,+MT −→ Ck(MT; C), k = 0,m+ 2,

λ ∈ Σ, where Ck(MT; C), k = 0,m+ 2, are free abelian groups over the field
C generated, respectively, by all k-chains of singular simplexes S(k) ⊂ MT, k =
0,m+ 2, from the simplicial complex K(MT), as follows:

(4.26) B
(k)
λ (ψ(k)) :=

∑
S(k)∈Ck(MT;C))

S(k)

∫
S(k)

Z(k)[ϕ(0)(λ), ψ(k)]

with ψ(k) ∈ Hk
Λ,+(MT), k = 0,m+ 2. The following theorem [58, 59] based on

mappings (4.26) holds.

Theorem 4.3. The set of operators (4.26) parametrized by λ ∈ Σ realizes the
cohomology group isomorphism formulated in Theorem 1.2

Proof. A proof of this theorem one can get passing over in (4.26 ) to the corre-
sponding cohomology Hk

Λ(L),+(MT) and homology Hk(MT; C) groups of MT for
every k = 0,m+ 2. If one to take an element ψ(k) := ψ(k)(µ) ∈ Hk

Λ(L),+(MT),
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k = 0,m+ 2, solving the equation dLψ
(k)(µ) = 0 with µ ∈ Σk being some set of

the related ”spectral” parameters marking elements of the subspace Hk
Λ(L),−(MT),

then one finds easily from (4.26) and identity (4.23) that dZ(k)[ϕ(0)(λ), ψ(k)(µ)] = 0
for all (λ, µ) ∈ Σ×Σk, k = 0,m+ 2. This, in particular, means due to the Poincare
lemma [?, ?, ?] that there exist differential (k− 1)-forms Ω(k−1)[ϕ(0)(λ), ψ(k)(µ] ∈
Λk−1(M ; C), k = 0,m+ 2, such that

(4.27) Z(k)[ϕ(0)(λ), ψ(k)(µ)] = dΩ(k−1)[ϕ(0)(λ), ψ(k)(µ)]

for all pairs (ϕ(0)(λ), ψ(k)(µ)) ∈ H∗0×Hk
Λ(L),+(MT) parametrized by (λ, µ) ∈ Σ×Σk,

k = 0,m+ 2. As a result of passing on the right hand-side of (4.26) to the homology
groups Hk(MT; C), k = 0,m+ 2, one gets due to the standard Stokes theorem
[?, ?, ?] that the mappings

(4.28) B
(k)
λ : Hk

Λ(L),+(MT) −→ Hk(MT; C)

are isomorphisms for every k = 0,m+ 2 and λ ∈ Σ. Making further use of the
Poincare duality [63, 2] between the homology groups Hk(MT; C), k = 0,m+ 2,
and the cohomology groups Hk(M ; C), k = 0,m+ 2, respectively, one obtains
finally the statement claimed in Theorem 1.4..

�
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