RHPIA-2005

Moduli of stable parabolic connections, Riemann-Hilbert correspondences and Geometry of Painlevé equations

Masa-Hiko SAITO (Kobe University)

Based on Joint Works with Michi-aki Inaba and Katsunori Iwasaki (Kyushu Univ.)

SISSA, Trieste, 20-September-2005 10:00–10:45 Conference on Riemann-Hilbert Problems, Integrability and Asymptotics

- The purposes
 - To understand the Painlevé property of equations of Painlevé type (Painlevé equations or Garnier equations, etc) from the viewpoint of the isomonodromic or isostokes deformations of linear diff. equations.
 - To understand many nice properties of equations of Painlevé type like
 - Spaces of initial conditions due to Okamoto (Sakai's work or Saito-Takebe – Terajima's work on Okamoto-Painlevé pair (S, Y)).
 - 2. Symmetries of equations = Bäklund transformations
 - 3. Non-autonomous Hamiltonian structures
 - 4. Special solutions Riccati type solutions, Rational solutions, etc
 - 5. τ -functions

 To understand the WKB analysis through the compactification of the moduli space of the stable parbolic connections. (Full story will be in future).

Today's talk

• Restricted to the case of regular singularities

Papers

- M. Inaba, K. Iwasaki and M.-H. Saito, Bäcklund transformations of the sixth Painlevé equation in terms of Riemann-Hilbert Correspondence, Internat. Math. Res. Notices 2004:1 (2004), 1–30.
- M. Inaba, K. Iwasaki and M.-H. Saito, Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI. Part I, math.AG/0309342 (2003); Part II, in preparation.
- M. Inaba, K. Iwasaki and M.-H. Saito, Dynamics of the Sixth Painlevé Equation, to appear in Angers proceedings, math.AG/0501007

• Translations of the terminology

Analysis	Geometry
C: a compact R. surface of genus g	C: a nonsing. proj. curve of genus g
$\mathbf{t} = (t_1, \cdots, t_n); n$ -distinct pts on C	$\mathbf{t} = (t_1, \cdots, t_n)$; <i>n</i> -distinct pts on C
$rac{d\mathbf{x}}{dz} = \sum_{i=1}^n rac{A_i(z)}{z-t_i} \mathbf{x}$	$ abla : E \longrightarrow E \otimes \Omega^1_C(D(\mathbf{t}))$
Linear D.E. on C with	A connection on vect. bdl E of rank r
at most regular sing. at ${f t}.$	on C with at most 1^{st} order poles at ${f t}.$
$\lambda_j^{(i)}$:Eigenvalues of $A_i(t_i)$	$\lambda_j^{(i)}$: Eigenvalues of $\operatorname{res}_{t_i}(\nabla) \in \operatorname{End}(E_{ t_i})$
Time varaiables	$T = \mathcal{M}_{g,n} = \{(C, \mathbf{t})\}$
$(s_1,\ldots,s_{3g-3},t_1,\ldots,t_n)$	Moduli of n -pointed curves of genus g
Space of initial conditions	Moduli space of stable parabolic
$S_{(C,\mathbf{t},oldsymbol{\lambda})}$	connections $\mathcal{M}^{oldsymbol{lpha}}(C,\mathbf{t})_{oldsymbol{\lambda}}$
Phase space	Family of moduli spaces
$\mathcal{S} \longrightarrow T \times \Lambda_n^r$	$\mathcal{M} \longrightarrow T \times \Lambda_n^r$
Riemann-Hilbert correspondence	$\mathbf{RH}_{\lambda}: \mathcal{M}_{\lambda}^{\boldsymbol{lpha}} \longrightarrow R_{\mathbf{a}}$
Isomonodromic deformations of L.D.E.	Pullback of local constant section
Schlessinger equation	Zero curvature equations on ${\cal M}$

• Translations of Properties

Analysis	Geometry
Painlevé property	Properness + Surjectivity of
	$\mathbf{RH}_{\lambda}: \mathcal{M}_{\lambda}^{\alpha} \longrightarrow R_{\mathbf{a}}$
Symmetry (Bäklund transformation)	Elementary transformations of s.p. conn.
	Special Birational map (Flop)
Simple reflections in Bäcklund transf.	$\widetilde{s}:\mathcal{M}\cdots\longrightarrow\mathcal{M}$
	appeared in the resol. of simult. sing. of $R_{\mathbf{a}}$
Hamitonian Structures	Symplectic str. on $\mathcal{M}^{oldsymbol{lpha}}(C,\mathbf{t})_{oldsymbol{\lambda}}$
	on $R^{smooth}_{\mathbf{a}}$ and $\mathbf{RH}_{\boldsymbol{\lambda}}$ is a symmplectic map
Special solutions like Riccati solution	Singylarities of $R_{\mathbf{a}}$
Poincaré return map or	Natural actions of $\pi_1(\mathcal{M}_{g,n}^\circ,*)$
non-linear monodromy	on isomonodromic flows, $\mathbf{R}_{(C_0,\mathbf{t}_0),\mathbf{a}}$ and
of equations of Painlevé type	on $\mathcal{M}^{oldsymbol{lpha}}((C_0,\mathbf{t}_0))_{oldsymbol{\lambda}}$
au-functions	Sections of the determinant line bundle on
	${\mathcal M}$ which are flat on isomonod. flows

Stable Parabolic connections

Setting

Fix the following data

(1)
$$(C, \mathbf{t}, (L, \nabla_L), (\lambda_j^{(i)}))$$

which consists of

- C : a complex smooth projective curve of genus g,
- $\mathbf{t} = (t_1, \cdots, t_n)$: a set of *n*-ditinct points on *C*. (Put $D(\mathbf{t}) = t_1 + \cdots + t_n$).
- $\bullet \ (L, \nabla_L):$ a line bundle on C with a logarithmic connection

$$\begin{aligned} \nabla_L : L \longrightarrow L \otimes \Omega^1_C(D_{\mathbf{t}}). \\ \bullet \, \boldsymbol{\lambda} &= (\lambda_j^{(i)})_{1 \leq i \leq n, 0 \leq j \leq r-1} \in \mathbf{C}^{nr} \text{ such that } \sum_{j=0}^{r-1} \lambda_j^{(i)} = \operatorname{res}_{t_i}(\nabla_L). \end{aligned}$$

Moduli space of stable parabolic connections

We can consider the moduli space of stable parabolic connections on C with logarithmic singularities at $D(\mathbf{t})$:

(2)
$$\mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}} = \{ (E, \nabla_E, \{l_j^{(i)}\}_{1 \le i \le n, 0 \le j \le r-1}, \Psi) \} / \simeq$$

•
$$E$$
: a vector bundle of rank r on C
• $\nabla : E \longrightarrow E \otimes \Omega_C(D(\mathbf{t}))$: a logarithmic connection
• $\Psi : \wedge^r E \xrightarrow{\simeq} L$: a horizontal isomorphism (Fixing the determinant)
• $E_{|t_i} = l_0^{(i)} \supset l_1^{(i)} \supset \cdots \supset l_{r-1}^{(i)} \supset l_r = 0$: a filtration of the fiber at t_i such that dim $\left(l_j^{(i)}/l_{j+1}^{(i)}\right) = 1$ and
 $\left(\operatorname{res}_{t_i}(\nabla) - \lambda_j^{(i)}Id\right)(l_j^{(i)}) \subset l_{j+1}^{(i)}$

Moduli space of SL_r -rep. of the fundamental group Take the categorical quotient of affine variety (3)

 $\mathbf{Rep}(C, \mathbf{t}, r) = \{\rho : \pi_1(C \setminus D(\mathbf{t})) \longrightarrow SL_r(\mathbf{C})\} / / Ad(SL_r(\mathbf{C}))$

 $(\rho_1, \rho_2 \in \operatorname{Hom}(\pi_1(C \setminus D_t), SL_r(\mathbf{C}))$ are Jordan equivalent iff $\operatorname{sem}(\rho_1) \simeq \operatorname{sem}(\rho_2))$. Fix:

$$\mathbf{a} = \left(a_{j}^{(i)}\right)_{1 \le i \le n, 1 \le j \le r-1} \in \mathcal{A}_{r,n} = \mathbf{C}^{n(r-1)}$$

Then we define another moduli space of SL_r -representations with fixed characteristic polynomial of monodromies around t_i :

$$\operatorname{\mathbf{Rep}}(C, \mathbf{t}, r)_{\mathbf{a}} = \left\{ [\rho] \in \operatorname{\mathbf{Rep}}(C, \mathbf{t}, r), \det(sI_r - \rho(\gamma_i)) = \chi_{\mathbf{a}^{(i)}}(s) \right\}$$

where

$$\chi_{\mathbf{a}^{(i)}}(s) = s^r + a_{r-1}^{(i)} s^{r-1} + \dots + a_1^{(i)} s + (-1)^r.$$

Riemann-Hilbert correspondence

Assume that $r \ge 2$, $n \ge 1$ and nr - 2r - 2 > 0 when g = 0, $n \ge 2$. (Moreover the weight α is generic). Then the Riemann-Hilbert correspondence

(4)
$$\mathbf{RH}_{(C,\mathbf{t},\boldsymbol{\lambda})} : \mathcal{M}^{\boldsymbol{\alpha}}(C,\mathbf{t},L)_{\boldsymbol{\lambda}} \longrightarrow \mathbf{Rep}(C,\mathbf{t},r)_{\mathbf{a}}$$

can be defined by

$$(E, \nabla_E, \{l_j^{(i)}\}, \Psi) \mapsto \ker(\nabla^{an}_{|C \setminus D_{\mathbf{t}}})$$

where

$$\chi_{\mathbf{a}^{(i)}}(s) = \prod_{j=0}^{r-1} (s - \exp(-2\pi\sqrt{-1}\lambda_j^{(i)}))$$

Note that

$$\dim \mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}} = (r-1)(2(r+1)(g-1) + rn)$$

Fundamental Results

Theorem 1. (Inaba-Iwasaki-Saito $(r = 2, g = 0, n \ge 4)$, Inaba (general case)) Under the notation as above, we have the following.

- 1. The moduli space $\mathcal{M}^{\alpha}(C, \mathbf{t}, L)_{\lambda}$ is a nonsingular algebraic manifold with a natural symplectic structure.
- 2. The modulis space $\mathcal{M}^{\alpha}(C, \mathbf{t}, L)_{\lambda}$ has a natural compactification $\mathcal{M}^{\alpha}(C, \mathbf{t}, L)_{\lambda}$ which is the moduli space of the ϕ -stable parabolic connections.

Theorem 2. (Inaba-Iwasaki-Saito $(r = 2, g = 0, n \ge 4)$, Inaba (general case)): Under the conditions above, the Riemann-Hilbert correspondense

(5)
$$\mathbf{RH}_{C,t,\lambda} : \mathcal{M}^{\alpha}(C,\mathbf{t},L)_{\lambda} \longrightarrow \mathbf{Rep}(C,\mathbf{t},r)_{\mathbf{a}}$$

is a proper surjective bimeromorphic map. Hence the Riemann-Hilbert correspondence gives an (analytic) resolution of singularities. Moreover $\mathbf{RH}_{C,t,\lambda}$ preserves the symplectic structures on $\mathbf{Rep}(C, \mathbf{t}, r)_{\mathbf{a}}$ $\mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}}$.

Remark 1.

- $(\operatorname{\mathbf{Rep}}(C,\mathbf{t},r)_{\mathbf{a}} \text{ is an affine scheme})$
- which may have singularities for special \mathbf{a} .

In the case of g = 0, we can show that $d\omega = 0$.

Moreover, we expect that $d\omega = 0$ in general.

Varying time (C, \mathbf{t}) and parameter λ , a

Consider the open set of the moduli space of $n\mbox{-}{\rm pointed}$ curves of genus g

$$M_{g,n}^{o} = \{ (C, \mathbf{t}) = (C, t_1, \cdots, t_n), t_i \neq t_j, i \neq j \}$$

and the universal curve $\pi: \mathcal{C} \longrightarrow M_{g,n}^o$. Fixing a relative line bundle L for π with logarithmic connection ∇_L we can obtain the family of moduli spaces over $M_{g,n}^o \times \Lambda(L)$

 $\pi_n^{-1}((C, \mathbf{t}, L, \boldsymbol{\lambda})) = \mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}}$ such that

We can also construct the fiber space $$\mathcal{R}\mathbf{ep}_g^{r,n}$$

(7)

$$\downarrow \phi_g^{r,n}$$

$$M_{g,n}^o \times \mathcal{A}_{r,n}$$

such that

$$(\phi_g^{r,n})^{-1}((C,\mathbf{t},\mathbf{a})) = \operatorname{\mathbf{Rep}}(C,\mathbf{t},SL_r)_{\mathbf{a}}.$$

Riemann-Hilbert corr. in family

We can obtain the following commutative diagram:

where $\mu_{r,n}$ can be given by the relations

$$\chi_{\mathbf{a}}(s) = \prod_{j=0}^{r-1} (s - \exp(-2\pi\sqrt{-1}\lambda_j^{(i)}))$$

that is, $a_k^{(i)}$ are $(\pm 1) \times k^{th}$ fundamental symmetric functions of $\exp(-2\pi\sqrt{-1}\lambda_j^{(i)}).$

Geometric Isomonodromic Deform. of L.D.E. The case of generic exponents λ Fix a generic $\lambda \in \Lambda(L)$ and set $\mathbf{a} = \mu_{r,n}(\lambda)$ so that $\mathbf{RH}_{C,t,\lambda} : \mathcal{M}^{\boldsymbol{\alpha}}(C,\mathbf{t},L)_{\boldsymbol{\lambda}} \xrightarrow{\simeq} \mathbf{Rep}(C,\mathbf{t},r)_{\mathbf{a}}$ is an analytic isomorphism for any $(C,\mathbf{t}) \in M_{a,n}^{o}$.

• Algebraic structure of $\operatorname{\mathbf{Rep}}(C, \mathbf{t}, r)_{\mathbf{a}}$ does not change under variation of (C, \mathbf{t}) , that is, $\operatorname{\mathbf{Rep}}(C, \mathbf{t}, r)_{\mathbf{a}} \simeq \operatorname{\mathbf{Rep}}(C_0, \mathbf{t}_0, r)_{\mathbf{a}}.$

Algebraic structure of $\mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}}$ change under variation of (C, \mathbf{t}) . Taking the universal covering map $\widetilde{M_{g,n}^o} \longrightarrow M_{g,n}^o$, and pulling back we obtain the diagram:

The family of sections $\{\tilde{s}_x\}_x$ gives the splitting homomorphism

$$\widetilde{v}_{\boldsymbol{\lambda}} : (\widetilde{\pi}_n)^*_{\boldsymbol{\lambda}}(T_{\widetilde{M^o_{g,n}} \times \{\boldsymbol{\lambda}\}}) \longrightarrow T_{\widetilde{\mathcal{M}^{\boldsymbol{\alpha}}_{g,n}(L)}}_{\boldsymbol{\lambda}}$$

for the natural homomorphism $T_{\mathcal{M}_{g,n}^{\boldsymbol{\alpha}}(L)_{\boldsymbol{\lambda}}} \longrightarrow (\tilde{\pi}_n)^*_{\boldsymbol{\lambda}}(T_{\widetilde{\mathcal{M}_{g,n}^o}} \times \{\boldsymbol{\lambda}\}).$ Then the subbundle

(9)
$$\mathcal{IF}_{g,n,\boldsymbol{\lambda}} = \tilde{v}_{\boldsymbol{\lambda}}((\tilde{\pi}_n)^*_{\boldsymbol{\lambda}}(T_{\widetilde{M^o_{g,n}} \times \{\boldsymbol{\lambda}\}})) \subset T_{\widetilde{\mathcal{M}^{\boldsymbol{\alpha}}_{g,n}(L)_{\boldsymbol{\lambda}}}}.$$

Take any local generators of the tangent sheaf of $T_{\widetilde{M_{g,n}^o}}$

А

$$\langle \frac{\partial}{\partial q_1}, \dots, \frac{\partial}{\partial q_N} \rangle$$
.
where $N = 3g - 3 + n = \dim \widetilde{M_{g,n}^o}$. Then setting $v_i(\boldsymbol{\lambda}) := v_{\boldsymbol{\lambda}}(\frac{\partial}{\partial q_i})$,
we obtain the integrable differential system on $\widetilde{\mathcal{M}_{g,n}^{\boldsymbol{\alpha}}(L)}_{\boldsymbol{\lambda}}$
 $\mathcal{IF}_{g,n,\boldsymbol{\lambda}} \simeq \langle v_1(\boldsymbol{\lambda}), \dots, v_N(\boldsymbol{\lambda}) \rangle$.
(locally).

 $\boldsymbol{\lambda}$

Case of special exponents λ

ullet When the set of exponents $oldsymbol{\lambda}$ is special, the R.H. corr.

$$\mathbf{RH}_{n,\boldsymbol{\lambda}}: \widetilde{\mathcal{M}_{g,n}^{\boldsymbol{\alpha}}(L)}_{\boldsymbol{\lambda}} \longrightarrow \left(\widetilde{\mathcal{R}ep_g^{r,n}}\right)_{\mathbf{a}}$$

contracts some subvatieties to the singular locus on $\left(\widetilde{\mathcal{R}ep_g^{r,n}}\right)_{\mathbf{a}}$

• However, by Hartogs' theorem, we can extend the isomonodromic foliation $\mathcal{IF}_{g,n,\lambda}$ to the total space $\mathcal{M}_{g,n}^{\alpha}(L)_{\lambda}$.

Painlevé Property of Isomonodromic Flows

Theorem 3. The isomonodromic flows \mathcal{IF}_{λ} satisfies the Painlevé property for all exponents λ .

Hamiltonian strucure of Isomonodromic Flows

Theorem 4. The isomonodromic flows \mathcal{IF}_{λ} can be written in a Hamiltonian system locally.

• In the case of generic λ , the differential system on $\mathcal{M}_{g,n}^{\alpha}(L)_{\lambda}$

$$\mathcal{IF}_{g,n,r} := \langle v_1(\boldsymbol{\lambda}), \dots, v_N(\boldsymbol{\lambda}) \rangle.$$

has cleary solution manifolds or integrable manifolds = the images of $\widetilde{M_{g,n}^o}$ by $\{\tilde{s}_{\mathbf{x}}\}_{\mathbf{x}}$. By construction, **These integrable submanifolds are isomonodromic flow of connections**.

- Even in the case of special λ , the properness of $\mathbf{RH}_{\lambda,n}$ implies the theorem.
- $\mathcal{IF}_{(0,4,2)}$ is equivalent to a Painlevé VI equation.
- $\mathcal{IF}_{(0,n,2)}$ with $n \ge 5$ are Garnier systems.

Painlevé VI case

We will see what is happening in the case of Painlevé VI equations.

FIGURE 1. Riemann-Hilbert correspondence and isomonodromic flows for generic $\boldsymbol{\lambda}$

FIGURE 2. Riemann-Hilbert correspondence and isomonodromic flows for special $\boldsymbol{\lambda}$

Hamiltonian systems of Painlevé P_{VI}

 P_{VI} is equivalent to a Hamiltonian system H_{VI} .

$$(H_{VI}): \begin{cases} \frac{dx}{dt} = \frac{\partial H_{VI}}{\partial y}, \\ \frac{dy}{dt} = -\frac{\partial H_{VI}}{\partial x}, \end{cases}$$

Hamiltionian in suitable coordinates can be given

$$H_{VI} = H_{VI}(x, y, t, \lambda_1, \lambda_2, \lambda_3, \lambda_4) \in \mathbf{C}(t)[x, y, \lambda_i]$$

$$\begin{aligned} H_{VI}(x,y,t) &= \frac{1}{t(t-1)} \left[x(x-1)(x-t)y^2 - \{ 2\lambda_1(x-1)(x-t) \\ &+ 2\lambda_2 x(x-t) + (2\lambda_3-1)x(x-1) \} y + \lambda(x-t) \right] \\ &\left(\lambda := \left\{ (\lambda_1 + \lambda_2 + \lambda_3 - 1/2)^2 - \lambda_4^2 \right\} \right). \end{aligned}$$

Bäcklund transformations for Painlevé VI.

• $P_{VI}(\lambda)$ have non-trivial birational automorphisms which are called **Bäcklund transformations**. The group of all **Bäcklund transformations** form the affine Weyl group W of type $D_4^{(1)}$.

Proposition 1. The group of Bäcklund transformations which can be obtained from elementary transformations of stable parabolic connections is a proper subgroup of $W(D_4^{(1)})$ whose index is finite. The involution s_0 of $W(D_4^{(1)})$ is not in the group. **Theorem 5.** 1. For a suitable choice of a weight α' , the morphism

$$\overline{\pi}_4: \overline{M_4^{\alpha'}}(-1) \longrightarrow T_4 \times \Lambda_4$$

is projective and smooth. Moreover for any (t, λ) ∈ T₄ × Λ₄ the fiber π₄⁻¹(t, λ) := M₄^{α'}(t, λ, -1) is irreducible, hence a smooth projective surface.
2. Let D = M₄^{α'}(-1) \ M₄^α(-1) be the complement of M₄^α(-1) in M₄^{α'}(-1). (Note that α = α'/2). Then D is a flat reduced divisor over T₄ × Λ₄.
3. For each (t, λ), set

$$\overline{S}_{\mathbf{t},\boldsymbol{\lambda}} := \overline{\pi}_4^{-1}(\mathbf{t},\boldsymbol{\lambda}) := \overline{M_4^{\boldsymbol{\alpha}'}}(\mathbf{t},\boldsymbol{\lambda},-1).$$

Then $\overline{S}_{t,\lambda}$ is a smooth projective surface which can be obtained by blowingups at 8 points of the Hirzeburch surface $\mathbf{F}_2 = \operatorname{Proj}(\mathcal{O}_{\mathbf{P}^1}(-2) \oplus \mathcal{O}_{\mathbf{P}^1})$ of degree 2. The surface has a unique effective anti-canonical divisor $-K_{S_{t,\lambda}} = \mathcal{Y}_{t,\lambda}$ whose support is $\mathcal{D}_{t,\lambda}$. Then the pair

(10)
$$(\overline{S}_{\mathbf{t},\boldsymbol{\lambda}},\mathcal{Y}_{\mathbf{t},\boldsymbol{\lambda}})$$

is an Okamoto-Painlevé pair of type $D_4^{(1)}$. That is, the anti-canonical divisor $\mathcal{Y}_{\mathbf{t},\boldsymbol{\lambda}}$ consists of 5-nodal rational curves whose configuration is same as Kodaira-Néron degenerate elliptic curves of type $D_4^{(1)}$ (=Kodaira type I_0^*). Moreover we have $(M_4^{\boldsymbol{\alpha}}(-1))_{\mathbf{t},\boldsymbol{\lambda}} = (\overline{M_4^{\boldsymbol{\alpha}'}}(-1))_{\mathbf{t},\boldsymbol{\lambda}} \setminus \mathcal{Y}_{\mathbf{t},\boldsymbol{\lambda}}$.

Okamoto Painlevé pair of type P_{VI}

FIGURE 3. Okamoto-Painlevé pair of type $D_4^{(1)}$

Proposition 2. The invariant ring $(R_3)^{Ad(SL_2(\mathbf{C}))}$ is generated by seven elements $x_1, x_2, x_3, a_1, a_2, a_3, a_4$ and there exist a relation (11) $f(\mathbf{x}, \mathbf{a}) = x_1 x_2 x_3 + x_1^2 + x_2^2 + x_3^2 - \theta_1(\mathbf{a}) x_1 - \theta_2(\mathbf{a}) x_2 - \theta_3(\mathbf{a}) x_3 + \theta_4(\mathbf{a}),$ where we set

 $\begin{aligned} \theta_i(\mathbf{a}) &= a_i a_4 + a_j a_k, \quad (i, j, k) = a \ cyclic \ permutation \ of \ (1, 2, 3), \\ \theta_4(\mathbf{a}) &= a_1 a_2 a_3 a_4 + a_1^2 + a_2^2 + a_3^2 + a_4^2 - 4. \end{aligned}$

Therefore we have an isomorphism $(R_3)^{Ad(SL_2(\mathbf{C}))} \simeq \mathbf{C}[x_1, x_2, x_3, a_1, a_2, a_3, a_4]/(f(\mathbf{z}, \mathbf{a})).$ Hence

$$\mathbf{Rep}(\mathbf{P}^1, (t_1, t_2, t_3, t_4), 2)_{\mathbf{a}} = \operatorname{Spec}(R_3)^{Ad(SL_2(\mathbf{C}))}$$

is isomorphic to an affine cubic.

(12)
$$a_i = 2\cos 2\pi\lambda_i \quad for \ 1 \le i \le 4.$$

The family of affine cubic surfaces

Here, we have $1 imes \mu_n \ (1 imes \mu_n)(\mathbf{t}, \boldsymbol{\lambda}) = (\mathbf{t}, \mathbf{a})$

(14)
$$a_i = 2\cos 2\pi\lambda_i \quad \text{for } 1 \le i \le n.$$