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•The purposes
— To understand the Painlevé property of equations of Painlevé type
(Painlevé equations or Garnier equations, etc) from the view-
point of the isomonodromic or isostokes deformations of linear
diff. equations.
— To understand many nice properties of equations of Painlevé type
like
1. Spaces of initial conditions due to Okamoto (Sakai’s work or
Saito—Takebe —Terajima’s work on Okamoto—Painlevé pair (S,
Y)).

2. Symmetries of equations = Bäklund transformations
3. Non-autonomous Hamiltonian structures
4. Special solutions — Riccati type solutions, Rational solutions, etc
5. τ -functions



— To understand the WKB analysis through the compactification of
the moduli space of the stable parbolic connections. (Full story
will be in future).



Today’s talk

• Restricted to the case of regular singularities

Papers

•M. Inaba, K. Iwasaki and M.-H. Saito, Bäcklund transformations
of the sixth Painlevé equation in terms of Riemann-Hilbert
Correspondence, Internat. Math. Res. Notices 2004:1 (2004),
1—30.
•M. Inaba, K. Iwasaki and M.-H. Saito, Moduli of stable parabolic
connections, Riemann-Hilbert correspondence and geometry of
Painlevé equation of type V I. Part I, math.AG/0309342 (2003);
Part II, in preparation.
•M. Inaba, K. Iwasaki and M.-H. Saito, Dynamics of the Sixth Painlevé
Equation, to appear in Angers proceedings, math.AG/0501007



• Translations of the terminology

Analysis Geometry
C: a compact R. surface of genus g C: a nonsing. proj. curve of genus g
t = (t1, · · · , tn); n-distinct pts on C t = (t1, · · · , tn); n-distinct pts on C

dx
dz =

Pn
i=1

Ai(z)
z−ti x ∇ : E −→ E ⊗ Ω1C(D(t))

Linear D.E. on C with A connection on vect. bdl E of rank r
at most regular sing. at t. on C with at most 1st order poles at t.

λ
(i)
j :Eigenvalues of Ai(ti) λ

(i)
j : Eigenvalues of resti(∇) ∈ End(E|ti)

Time varaiables T =Mg,n = {(C, t)}
(s1, . . . , s3g−3, t1, . . . , tn) Moduli of n-pointed curves of genus g
Space of initial conditions Moduli space of stable parabolic

S(C,t,λ) connectionsMα(C, t)λ
Phase space Family of moduli spaces
S −→ T × Λrn M −→ T × Λrn

Riemann-Hilbert correspondence RHλ :Mα
λ −→ Ra

Isomonodromic deformations of L.D.E. Pullback of local constant section

Schlessinger equation Zero curvature equations onM



• Translations of Properties

Analysis Geometry
Painlevé property Properness + Surjectivity of

RHλ :Mα
λ −→ Ra

Symmetry ( Bäklund transformation) Elementary transformations of s.p. conn.
Special Birational map (Flop)

Simple reflections in Bäcklund transf. s̃ :M· · · −→M
appeared in the resol. of simult. sing. of Ra

Hamitonian Structures Symplectic str. onMα(C, t)λ
on Rsmootha and RHλ is a symmplectic map

Special solutions like Riccati solution Singylarities of Ra
Poincaré return map or Natural actions of π1(M◦

g,n, ∗)
non-linear monodromy on isomonodromic flows, R(C0,t0),a and

of equations of Painlevé type onMα((C0, t0))λ
τ -functions Sections of the determinant line bundle on

M which are flat on isomonod. flows



Stable Parabolic connections

Setting

Fix the following data

(C, t, (L,∇L), (λ(i)j ))(1)

which consists of

•C : a complex smooth projective curve of genus g,
• t = (t1, · · · , tn): a set of n-ditinct points on C.
( Put D(t) = t1 + · · · + tn).
• (L,∇L): a line bundle on C with a logarithmic connection

∇L : L −→ L⊗ Ω1C(Dt).
•λ = (λ(i)j )1≤i≤n,0≤j≤r−1 ∈ Cnr such that

Pr−1
j=0 λ

(i)
j = resti(∇L).



Moduli space of stable parabolic connections

We can consider the moduli space of stable parabolic connections
on C with logarithmic singularities at D(t):

Mα(C, t, L)λ = {(E,∇E, {l
(i)
j }1≤i≤n,0≤j≤r−1,Ψ)}/ '(2)

•E : a vector bundle of rank r on C
•∇ : E −→ E ⊗ ΩC(D(t)) :a logarithmic connection
•Ψ : ∧rE '−→ L : a horizontal isomorphism (Fixing the determinant)

•E|ti = l
(i)
0 ⊃ l

(i)
1 ⊃ · · · ⊃ l

(i)
r−1 ⊃ lr = 0: a filtration of the fiber at

ti such that dim
³
l
(i)
j /l

(i)
j+1

´
= 1 and³

resti(∇)− λ
(i)
j Id

´
(l
(i)
j ) ⊂ l

(i)
j+1



Moduli space of SLr-rep. of the fundamental group

Take the categorical quotient of affine variety

Rep(C, t, r) = {ρ : π1(C \D(t)) −→ SLr(C)}//Ad(SLr(C))
(3)

(ρ1, ρ2 ∈ Hom(π1(C \Dt), SLr(C)) are Jordan equivalent iff sem(ρ1) ' sem(ρ2)).
Fix:

a =
³
a
(i)
j

´
1≤i≤n,1≤j≤r−1

∈ Ar,n = Cn(r−1)

Then we define another moduli space of SLr-representations with fixed
characteristic polynomial of monodromies around ti:

Rep(C, t, r)a =
n
[ρ] ∈ Rep(C, t, r), det(sIr − ρ(γi)) = χ

a(i)
(s)
o

where

χ
a(i)
(s) = sr + a

(i)
r−1s

r−1 + · · · + a(i)1 s + (−1)r.



Riemann-Hilbert correspondence
Assume that r ≥ 2, n ≥ 1 and nr − 2r − 2 > 0 when g = 0,

n ≥ 2. (Moreover the weight α is generic). Then the Riemann-Hilbert
correspondence

RH(C,t,λ) :Mα(C, t, L)λ −→ Rep(C, t, r)a(4)

can be defined by

(E,∇E, {l(i)j },Ψ) 7→ ker(∇an|C\Dt)

where

χ
a(i)
(s) =

r−1Y
j=0

(s− exp(−2π
√
−1λ(i)j ))

Note that

dimMα(C, t, L)λ = (r − 1)(2(r + 1)(g − 1) + rn)



Fundamental Results
Theorem 1. (Inaba-Iwasaki-Saito (r = 2, g = 0, n ≥ 4), Inaba
(general case)) Under the notation as above, we have the following.

1. The moduli spaceMα(C, t, L)λ is a nonsingular algebraic manifold
with a natural symplectic structure.

2. The modulis space Mα(C, t, L)λ has a natural compactification
Mα(C, t, L)λ which is the moduli space of the φ-stable parabolic
connections.



Theorem 2. (Inaba-Iwasaki-Saito (r = 2, g = 0, n ≥ 4), Inaba
(general case)): Under the conditions above, the Riemann-Hilbert cor-
respondense

RHC,t,λ :Mα(C, t, L)λ −→ Rep(C, t, r)a(5)

is a proper surjective bimeromorphic map. Hence the Riemann-Hilbert
correspondence gives an (analytic) resolution of singularities. More-
over RHC,t,λ preserves the symplectic structures on Rep(C, t, r)a
Mα(C, t, L)λ.

Remark 1.

• Rep(C, t, r)a is an affine scheme
which may have singularities for special a.

• In the case of g = 0, we can show that dω = 0.
Moreover, we expect that dω = 0 in general.



Varying time (C, t) and parameter λ, a

Consider the open set of the moduli space of n-pointed curves of
genus g

Mo
g,n = {(C, t) = (C, t1, · · · , tn), ti 6= tj, i 6= j}

and the universal curve π : C −→ Mo
g,n. Fixing a relative line bundle

L for π with logarithmic connection ∇L we can obtain the family of
moduli spaces over Mo

g,n × Λ(L)

Mα
g,n(L)

↓ πn
Mo
g,n × Λ(L)

(6)

such that π−1n ((C, t, L,λ)) =Mα(C, t, L)λ



We can also construct the fiber space

Repr,ng

↓ φr,ng

Mo
g,n ×Ar,n

(7)

such that
(φ
r,n
g )
−1((C, t,a)) = Rep(C, t, SLr)a.



Riemann-Hilbert corr. in family

We can obtain the following commutative diagram:

Mα(L)
RHn−−−→ Repr,ng

πn

⏐⏐y ⏐⏐yφr,ng
Mo
g,n × Λ(L)

(1×µr,n)−−−−−→ Mo
g,n ×Ar,n

(8)

where µr,n can be given by the relations

χa(s) =
r−1Y
j=0

(s− exp(−2π
√
−1λ(i)j ))

that is, a
(i)
k are (±1)× kth fundamental symmetric functions of

exp(−2π
√
−1λ(i)j ).



Geometric Isomonodromic Deform. of L.D.E.
The case of generic exponents λ
Fix a generic λ ∈ Λ(L) and set a = µr,n(λ) so that

RHC,t,λ :Mα(C, t, L)λ
'−→ Rep(C, t, r)a

is an analytic isomorphism for any (C, t) ∈Mo
g,n.

•
Algebraic structure of Rep(C, t, r)a
does not change under variation of (C, t), that is,
Rep(C, t, r)a ' Rep(C0, t0, r)a.

• Algebraic structure ofMα(C, t, L)λ
change under variation of (C, t).



Taking the universal covering map ]Mo
g,n −→Mo

g,n, and pulling back
we obtain the diagram:

M̂α
g,n(L)λ

RHn,λ−−−−→
'

µ
R̂epr,ng

¶
a
' Rep(C0, t0, r)a × ]Mo

g,n

(π̃n)λ

⏐⏐y ⏐⏐yφ̃r,ng,a
]Mo
g,n × {λ}

(1×µr,n)−−−−−→ ]Mo
g,n × a.

Since φ̃r,ng,a is isomorphic to product family, it has a unique constant
section sx passing through a point x ∈ Rep(C0, t0, r)a × {t0}.
Pulling back the section {sx}x∈Rep(C0,t0,r)a×{t0} via RHλ, we ob-
tain the set of analytic sections of (π̃n)λ : M̂α

g,n(L)λ→ ]Mo
g,n×{λ}

{s̃x}x∈Rep(C0,t0,r)a×{t0}.



The family of sections {s̃x}x gives the splitting homomorphism
ṽλ : (π̃n)

∗
λ(T ]Mo

g,n×{λ}
) −→ TM̂α

g,n(L)λ

for the natural homomorphism TM̂α
g,n(L)λ

−→ (π̃n)
∗
λ(T ]Mo

g,n
× {λ}).

Then the subbundle

IFg,n,λ = ṽλ((π̃n)∗λ(T ]Mo
g,n×{λ}

)) ⊂ TM̂α
g,n(L)λ

.(9)

Take any local generators of the tangent sheaf of T ]Mo
g,n

h ∂
∂q1
, . . . ,

∂

∂qN
i.

where N = 3g − 3 + n = dim ]Mo
g,n. Then setting vi(λ) := vλ(

∂
∂qi
),

we obtain the integrable differential system on M̂α
g,n(L)λ

IFg,n,λ ' hv1(λ), . . . , vN (λ)i.
(locally).



Case of special exponents λ

•When the set of exponents λ is special, the R.H. corr.

RHn,λ : M̂α
g,n(L)λ −→

µ
R̂epr,ng

¶
a

contracts some subvatieties to the singular locus on

µ
R̂epr,ng

¶
a• However, by Hartogs’ theorem, we can extend the isomonodromic

foliation IFg,n,λ to the total space M̂α
g,n(L)λ.



Painlevé Property of Isomonodromic Flows

Theorem 3. The isomonodromic flows IFλ satisfies the Painlevé
property for all exponents λ.

Hamiltonian strucure of Isomonodromic Flows

Theorem 4. The isomonodromic flows IFλ can be written in a
Hamiltonian system locally.



• In the case of generic λ, the differential system on M̂α
g,n(L)λ

IFg,n,r := hv1(λ), . . . , vN (λ)i.
has cleary solution manifolds or integrable manifolds = the images

of ]Mo
g,n by {s̃x}x. By construction,

These integrable submanifolds are
isomonodromic flow of connections.

• Even in the case of special λ, the properness of RHλ,n implies the
theorem.

• IF (0,4,2) is equivalent to a Painlevé VI equation.
• IF (0,n,2) with n ≥ 5 are Garnier systems.



Painlevé VI case
We will see what is happening in the case of Painlevé VI equations.



t0 tt0 t

Mα
n (t,λ, L)

R(Pn,t0)a

RHλ

Isomonodromic flows = Painlevé or Garnier flows

=

R(Pn,t)a
||

Mα
n (t0,λ, L)

T̃n × {λ} T̃n × {a}

'

Figure 1. Riemann-Hilbert correspondence and isomonodromic flows for generic λ



t0 tt0 t

Mα
4 (t,λ, L)

R(P4,t0)a

RHλ

=

R(P4,t)a
||

Mα
4 (t0,λ, L)

T̃4 × {λ} T̃4 × {a}
(−2)-rational curve

Riccati flows are tangent to family of (−2)-curves

contraction

Case of Painlevé V I

Figure 2. Riemann-Hilbert correspondence and isomonodromic flows for special λ



Hamiltonian systems of Painlevé PV I

PV I is equivalent to a Hamiltonian system HV I .

(HV I) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx

dt
=
∂HV I
∂y

,

dy

dt
= −∂HV I

∂x
,

Hamiltionian in suitable coordinates can be given

HV I = HV I(x, y, t,λ1,λ2,λ3,λ4) ∈ C(t)[x, y,λi]

HV I(x, y, t) =
1

t(t− 1)
£
x(x− 1)(x− t)y2 − {2λ1(x− 1)(x− t)

+2λ2x(x− t) + (2λ3 − 1)x(x− 1)} y + λ(x− t)]¡
λ :=

©
(λ1 + λ2 + λ3 − 1/2)2 − λ24

ª¢
.



Bäcklund transformations for Painlevé V I.

• PV I(λ) have non-trivial birational automorphisms which are called
Bäcklund transformations. The group of allBäcklund trans-

formations form the affine Weyl group W of type D
(1)
4 .

Proposition 1. The group of Bäcklund transformations which
can be obtained from elementary transformations of stable para-

bolic connections is a proper subgroup of W (D
(1)
4 ) whose index is

finite. The invloution s0 of W (D
(1)
4 ) is not in the group.



Theorem 5. 1. For a suitable choice of a weight α0, the morphism

π4 :Mα0
4 (−1) −→ T4 × Λ4

is projective and smooth . Moreover for any (t,λ) ∈ T4 × Λ4 the fiber

π−14 (t,λ) :=M
α0
4 (t,λ,−1) is irreducible, hence a smooth projective surface.

2. Let D = Mα0
4 (−1) \Mα

4 (−1) be the complement of Mα
4 (−1) in Mα0

4 (−1).
(Note that α = α0/2). Then D is a flat reduced divisor over T4 × Λ4.

3. For each (t,λ), set

St,λ := π−14 (t,λ) :=M
α0
4 (t,λ,−1).

Then St,λ is a smooth projective surface which can be obtained by blowing-
ups at 8 points of the Hirzeburch surface F2 = Proj(OP1(−2)⊕OP1) of degree
2. The surface has a unique effective anti-canonical divisor −KSt,λ = Yt,λ
whose support is Dt,λ. Then the pair

(St,λ,Yt,λ)(10)

is an Okamoto-Painlevé pair of type D
(1)
4 . That is, the anti-canonical divi-

sor Yt,λ consists of 5-nodal rational curves whose configuration is same as
Kodaira—Néron degenerate elliptic curves of type D

(1)
4 (=Kodaira type I∗0).

Moreover we have (Mα
4 (−1))t,λ = (Mα0

4 (−1))t,λ \ Yt,λ.



Okamoto Painlevé pair of type PV I

F2

Y1 Y2 Y3 Y4

Y0

t1 = 0 t2 = 1 t3 = t t4 =∞

π

P1

∞-section

Figure 3. Okamoto-Painlevé pair of type D
(1)
4



Proposition 2. The invariant ring (R3)
Ad(SL2(C)) is generated

by seven elements x1, x2, x3, a1, a2, a3, a4 and there exist a relation
f(x, a) = x1x2x3 + x

2
1 + x

2
2 + x

2
3 − θ1(a)x1 − θ2(a)x2 − θ3(a)x3 + θ4(a),(11)

where we set
θi(a) = aia4 + ajak, (i, j, k) = a cyclic permutation of (1, 2, 3),

θ4(a) = a1a2a3a4 + a
2
1 + a

2
2 + a

2
3 + a

2
4 − 4.

Therefore we have an isomorphism

(R3)
Ad(SL2(C)) ' C[x1, x2, x3, a1, a2, a3, a4]/(f (z, a)).

Hence

Rep(P1, (t1, t2, t3, t4), 2)a = Spec (R3)
Ad(SL2(C))

is isomorphic to an affine cubic.

ai = 2 cos 2πλi for 1 ≤ i ≤ 4.(12)



a1 = 2

ai = 2

A4 ' C4

R(P4,t)

The family of affine cubic surfaces

A1-singularity

∆ = 0



Mα
n (L)

RHn−−−→ Rn
πn

⏐⏐y ⏐⏐yφn
T 0n × Λn

(1×µn)−−−−→ T 0n × An.

(13)

Here, we have 1× µn (1× µn)(t,λ) = (t,a)

ai = 2 cos 2πλi for 1 ≤ i ≤ n.(14)


