RHPIA 2005
 TOWARDS AN R-MATRIX FORMULATION FOR Q-DEFORMED INTEGRABLE SYSTEMS

O.Ragnisco
in collaboration with F.Musso, M.Petrera, G.Satta

- AIM : to cast Classical (and hopefully Quantum) Hamiltonian Systems integrable by "coalgebra symmetry" approach in the more familiar Lax formalism
- TOOLS: usual tricks of soliton theory and a bit of guesswork: much has still to be done...

PLAN OF THE LECTURE

1. Reminder of Classical $\mathcal{U}_{q}(s l(2))$ Gaudin Hamiltonian and cluster variables
2. Lax pair for Classical $\mathcal{U}_{q}(s l(2))$ Gaudin model

I. Classical $\mathcal{U}_{q}(s l(2))$ Gaudin Hamiltonian and cluster variables

Start from the standard q-deformed $s l(2)$, defined by Poisson brackets:

$$
\left\{X_{3}, X_{ \pm}\right\}= \pm 2 X_{ \pm}, \quad\left\{X_{+}, X_{-}\right\}=\frac{\sinh \left(z X_{3}\right)}{z}
$$

with Casimir function:

$$
\mathcal{C}_{z}=\frac{\sinh ^{2}\left(\frac{z}{2} X_{3}\right)}{z^{2}}+X_{+} X_{-} .
$$

and admissible coproduct map:

$$
\begin{gathered}
\Delta\left(X_{3}\right)=X_{3} \otimes I+I \otimes X_{3} \\
\Delta\left(X_{ \pm}\right)=X_{ \pm} \otimes e^{\frac{z}{2} X_{3}}+e^{-\frac{z}{2} X_{3}} \otimes X_{ \pm}
\end{gathered}
$$

Choosing the function $\mathcal{H} \doteq \Delta^{(N)}\left(\mathcal{C}_{z}\right)$ as our N-body Hamiltonian, the equations of motions are easily written (and solved in terms of elementary functions) in the alternative basis:

$$
S_{3} \doteq X_{3}, \quad S_{ \pm} \doteq e^{-\frac{z}{2} X_{3}} X_{ \pm}
$$

with Poisson brackets

$$
\left\{S_{3}, S_{ \pm}\right\}= \pm 2 S_{ \pm}, \quad\left\{S_{+}, S_{-}\right\}=\frac{1-e^{-2 z S_{3}}}{2 z}+2 z S_{+} S_{-}
$$

Casimir

$$
\mathcal{C}_{z}=\frac{\sinh ^{2}\left(\frac{z}{2} S_{3}\right)}{z^{2}}+e^{z S_{3}} S_{+} S_{-}
$$

and comultiplication

$$
\begin{gathered}
\Delta\left(S_{3}\right)=S_{3} \otimes I+I \otimes S_{3} \\
\Delta\left(S_{ \pm}\right)=S_{ \pm} \otimes I+e^{-z S_{3}} \otimes S_{ \pm}
\end{gathered}
$$

They read $\left(S_{i}^{(m)} \doteq \Delta^{(m)}\left(S_{i}\right)\right)$:

$$
\dot{S}_{3}^{(m)}=2 e^{z \delta_{3}}\left(S_{+}^{(m)} \delta_{-}-S_{-}^{(m)} \delta_{+}\right)
$$

$$
\dot{S}_{ \pm}^{(m)}= \pm 2 z \delta_{\mp} S_{ \pm}^{(m)}\left(\delta_{ \pm}-S_{ \pm}^{(m)}\right) \mp \frac{\sinh \left(z S_{3}\right)}{z} S_{ \pm}^{(m)} \pm \delta_{ \pm} e^{z \delta_{3} \frac{1-e^{-2 z S_{3}^{(m)}}}{2 z}, ~}
$$

where $\delta_{i} \doteq \Delta^{(N)}\left(S_{i}\right)$.
Hence, the cluster variables yielded by the partial coproducts of the generators are in fact separation variables. While in the non-deformed case the same goal (separation and solution) can be achieved either by single-particle variables or by cluster variables, only the cluster variables do the job in the deformed case. However, one has to pay a nonnegligible price: the Poisson brackets are no-more ultralocal.

II. Lax pair for Classical $\mathcal{U}_{q}(s l(2))$ Gaudin model

To get a Lax pair in the original basis, we make the tentative choice:

$$
L^{(m)} \doteq\left(\begin{array}{cc}
a^{(m)} & b^{(m)} \\
c^{(m)} & -a^{(m)}
\end{array}\right)
$$

where:

$$
\begin{gathered}
a^{(m)}=\frac{\sinh \left(\frac{z}{2} X_{3}^{(m)}\right)}{z}, \\
b^{(m)}=X_{-}^{(m)}, \quad c^{(m)}=X_{+}^{(m)} .
\end{gathered}
$$

Remark

$$
\operatorname{Tr}\left(L^{(m)}\right)^{2}=\Delta^{(m)}\left(\mathcal{C}_{z}\right)
$$

gives the m-th integral of motion.
Theorem (easy to show): The evolution equation shown in the previous transparency admit the Lax representation:

$$
\frac{d L^{(m)}}{d t}=\left\{L^{(m)}, \mathcal{H}\right\}=\left[L^{(m)}, M^{(m, N)}\right]
$$

with

$$
M^{(m, N)} \doteq\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & -\alpha
\end{array}\right)
$$

where

$$
\begin{aligned}
\alpha & =-\frac{\sinh \left(z \lambda_{3}\right)}{z}+2 z \lambda_{+} \lambda_{-}-z e^{\frac{z}{2} \lambda_{3}} e^{-\frac{z}{2} X_{3}}\left(c \lambda_{-}+b \lambda_{+}\right) \\
\beta & =-\frac{1}{2} \lambda_{-}\left(1+e^{-z X_{3}}\right) e^{\frac{z}{2} \lambda_{3}} \\
\gamma & =-\frac{1}{2} \lambda_{+}\left(1+e^{-z X_{3}}\right) e^{\frac{z}{2} \lambda_{3}}
\end{aligned}
$$

and

$$
\lambda_{3} \doteq \Delta^{(N)}\left(X_{3}\right), \quad \lambda_{ \pm} \doteq \Delta^{(N)}\left(X_{ \pm}\right)
$$

The (m) superscript has been omitted.
So far, we have a Lax pair for each cluster variable. A "local" (i.e. for a given cluster) R-matrix is easily calculated. Indeed it holds ($\forall m$, that will then be omitted):

$$
\left\{L_{i j}, L_{k l}\right\}=[R, L \otimes I+I \otimes L]_{i j, k l}
$$

R being the dynamical R-matrix (Π is the usual permutation operator) :

$$
R=\cosh \left(z X_{3} / 2\right) \Pi
$$

A global Lax pair can be obtained by adding together all partial $L^{(m)}$ matrices in block-diagonal form:

$$
L(\lambda)==\bigoplus_{j=1}^{N} \lambda^{1-j} L^{(j)}, \quad M=\bigoplus_{j=1}^{N} M^{(j)}
$$

The generating function of the integrals of motion is

$$
\operatorname{Tr} L(\lambda)^{2}=\sum_{j=1}^{N-1} \lambda^{2(1-j)} \Delta^{(j)}\left(\mathcal{C}_{z}\right)
$$

However, due to the nonlocal Poisson structure:

$$
\left\{L^{m}, L^{n}\right\} \neq 0, m \neq n
$$

finding an R-matrix formulation for such a "global" Lax matrix is a nontrivial task.

Also, the Lax representation has to be extended to the Quantum case. And finally: we still don't know whether there exist integrable models of Gaudin type (hence, long-range) which combine q-symmetry and inhomogeneities.

