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• AIM : to cast Classical (and hopefully Quantum) Hamiltonian Systems inte-
grable by “coalgebra symmetry” approach in the more familiar Lax formalism

• TOOLS: usual tricks of soliton theory and a bit of guesswork: much has still
to be done...

PLAN OF THE LECTURE

1. Reminder of Classical Uq(sl(2)) Gaudin Hamiltonian and cluster
variables

2. Lax pair for Classical Uq(sl(2)) Gaudin model



I. Classical Uq(sl(2)) Gaudin Hamiltonian and cluster
variables

Start from the standard q-deformed sl(2) , defined by Poisson brack-
ets:

{X3, X±} = ±2X± , {X+, X−} =
sinh(zX3)

z

with Casimir function:

Cz =
sinh2

(
z
2X3

)
z2

+ X+X− .

and admissible coproduct map:

∆(X3) = X3 ⊗ I + I ⊗X3

∆(X±) = X± ⊗ e
z
2X3 + e−

z
2X3 ⊗X± .
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Choosing the function H .
= ∆(N)(Cz) as our N–body Hamiltonian,

the equations of motions are easily written (and solved in terms of
elementary functions) in the alternative basis:

S3
.
= X3 , S±

.
= e−

z
2X3X± ,

with Poisson brackets

{S3, S±} = ±2S± , {S+, S−} =
1− e−2zS3

2z
+ 2zS+S− ,

Casimir

Cz =
sinh2

(
z
2S3

)
z2

+ ezS3S+S−

and comultiplication

∆(S3) = S3 ⊗ I + I ⊗ S3

∆(S±) = S± ⊗ I + e−zS3 ⊗ S± .

They read (S
(m)
i

.
= ∆(m)(Si)):

Ṡ
(m)
3 = 2ezδ3

(
S

(m)
+ δ− − S

(m)
− δ+

)
,
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Ṡ
(m)
± = ±2zδ∓ S

(m)
±

(
δ± − S

(m)
±

)
∓ sinh(zS3)

z S
(m)
± ± δ± ezδ3 1−e−2zS

(m)
3

2z ,

where δi
.
= ∆(N)(Si).

Hence, the cluster variables yielded by the partial coproducts of the
generators are in fact separation variables. While in the non-deformed
case the same goal (separation and solution) can be achieved either
by single-particle variables or by cluster variables, only the cluster
variables do the job in the deformed case. However, one has to pay
a nonnegligible price: the Poisson brackets are no-more
ultralocal.
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II. Lax pair for Classical Uq(sl(2)) Gaudin model

To get a Lax pair in the original basis, we make the tentative choice:

L(m) .
=

(
a(m) b(m)

c(m) −a(m)

)
,

where:

a(m) =
sinh

(
z
2X

(m)
3

)
z ,

b(m) = X
(m)
− , c(m) = X

(m)
+ .

Remark

Tr
(
L(m)

)2

= ∆(m)(Cz)

gives the m–th integral of motion.

Theorem (easy to show): The evolution equation shown
in the previous transparency admit the Lax representa-
tion:

dL(m)

dt
=

{
L(m),H

}
=

[
L(m) , M (m,N)

]
,
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with

M (m,N) .
=

(
α β
γ −α

)
,

where

α = −sinh(zλ3)

z
+ 2zλ+λ− − ze

z
2λ3e−

z
2X3(cλ− + bλ+) ,

β = −1

2
λ−

(
1 + e−zX3

)
e

z
2λ3 ,

γ = −1

2
λ+

(
1 + e−zX3

)
e

z
2λ3 .

and
λ3

.
= ∆(N)(X3), λ±

.
= ∆(N)(X±)

.

The (m) superscript has been omitted.

So far, we have a Lax pair for each cluster variable. A ”local” (i.e. for
a given cluster) R−matrix is easily calculated. Indeed it holds (∀m,
that will then be omitted):
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{Lij, Lkl} = [R, L⊗ I + I ⊗ L]ij,kl

R being the dynamical R−matrix (Π is the usual permutation op-
erator) :

R = cosh(zX3/2)Π

A global Lax pair can be obtained by adding together all partial L(m)

matrices in block–diagonal form:

L(λ) ==

N⊕
j=1

λ1−jL(j) , M =

N⊕
j=1

M (j) .

The generating function of the integrals of motion is

TrL(λ)2 =

N−1∑
j=1

λ2 (1−j)∆(j)(Cz) ,.
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However, due to the nonlocal Poisson structure:

{Lm, Ln} 6= 0, m 6= n

finding an R-matrix formulation for such a “global” Lax matrix is a
nontrivial task.

Also, the Lax representation has to be extended to the Quantum case.

And finally: we still don’t know whether there exist integrable models
of Gaudin type (hence, long-range) which combine q−symmetry and
inhomogeneities.
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